

Eurachem Cyprus Committee

Nicosia, 12-13 March 2024

Ricardo Bettencout da Silva

Centro de Química Estrutural Institute of Molecular Sciences Faculdade de Ciências da Universidade de Lisboa

rjsilva@fc.ul.pt

1

Type of chemical analysis

Accreditation of qualitative analysis

Uncertainty of qualitative analysis result

Example | Identification of microplastics by micro-ATRFTIR

Types of chemical analysis

- Quantifications Measurements [1]
- Qualitative analysis Examinations [2]

- 1. JCGM, International Vocabulary of Metrology (VIM) JCGM 200, BIPM, 2012 (bipm.org)
- 2. G. Nordin, R. Dybkaer, U. Forsum, X. Fuentes-Arderiu, F. Pontet, Vocabulary on nominal property, examination, and related concepts for clinical laboratory sciences (IFCC-IUPAC Recommendations 2017), Pure Appl. Chem. 2018; 90(5): 913–935 (www.degruyter.com)

-

3

Types of chemical analysis

Chemical analyses are only fit for the intended use if:

- Based on adequate references
- Affected by an adequate uncertainty

(the uncertainty should be reported or, at least, considered in results interpretation)

Types of chemical analysis

Analytical methods are valid if:

- Applicable to an adequate diversity of analysed items
- Able to produce fit for purpose results (...)

Tests quality should be checked through an adequate quality control

5

C

International Accreditation

Measurements:

Laboratories should be able to report measurement uncertainty and take it into account in result interpretation

Qualitative Analysis:

Laboratories are not asked to evaluate results uncertainty but should prove produced results are fit for purpose (classical validation) [3]

^{3.} ILAC, ILAC Guidelines for Measurement Uncertainty in Testing (ILAC G17:01), Silverwater: ILAC, 2021

Eurachem/CITAC Guidance

Guidance on the assessment of the performance and uncertainty of qualitative analysis developed due to:

- Relevance of qualitative analysis
- Lack of references to help analysts in deciding if these analyses are fit for the intended use
- » The quantification of the uncertainty is more relevant when a high rate of false results is expected.

4. Eurachem/CITAC Guide: Assessment of performance and uncertainty in qualitative chemical analysis. First Edition, Eurachem (2021).

7

Result uncertainty

- Measurement: Coverage interval
- Qualitative analysis: Metric that expresses the chance of correct or incorrect classification (probability, likelihood, odds, etc.).
 - » Metrics quality depends on the number and diversity of studied cases
 - » Uncertainty allows identifying cases where improvements or caution is needed

Performance quantification

Results are labelled as "positive" or "negative".

Rates of true and false results can be quantified relative to the relevant type of case

9

q

Performance quantification

Contingency table:

		Ca		
		Positive (<i>pc</i>)	Negative (nc)	Results totals
Pocult	Positive (p)	tp	fp	р
Result	Negative (n)	fn	tn	n
	Case totals	рс	nc	

True positive rate = TP = tp/pcFalse positive rate = FP = fp/nc

Performance quantification

Contingency table:

		Ca			
		Positive (<i>pc</i>)	Negative (nc)	Results totals	
Posult	Positive (p)	tp = 228	fp = 1	p = 229	
Result	Negative (n)	fn = 5	tn = 300	n = 305	
	Case totals	pc = 233	nc = 301		

True positive rate =
$$TP = tp/pc = 228/233 = 97.8 \%$$

False positive rate = $FP = fp/nc = 1/301 = 0.33 \%$

11

Performance quantification

Likelihood ratio:

TP \overline{FP}

Performance quantification

Likelihood ratio:

$$\frac{TP}{FP} = \frac{97.8\%}{0.33\%} = 296$$

If positive and negative cases are equally likely, this can be interpreted as that a positive case is 296 more likely truth than false.

13

13

PE – polyethylene; PP – polypropylene; PET – polyethylene terephthalate; PS – polystyrene.

- Automatic µATR-FTIR identification: Involves assessing the match (correlation) between reference and particle spectra.
- Spectral comparison parameters:
 - » signal requirements
 - » wavenumber range
 - » signal processing
 - » Match algorithm
 - » target Match value

15

Example | Analytical method

Validation:

• Spectra processing:

» Identification reference: Plastic particles were identified manually

Attribution of characteristic bands of polypropylene, PP, particles using available reference spectra

	Wavenumber, $ ilde{ u}$ (cm $^{-1}$)									
_	[3000-2800]			[1500-1450]	[1400-1350]	[1400-1350] [1200-1150] [1030-980] [1		[1000-940]] [850-800]	
	2950	2915	2838	1455	1377	1166	997	972	840	808
	2954.7	2910.1	2843.8	1451.8	1380.2	1167.1	997.4	972.6	841.1	808.3
Particle		υ(C-H)		δ(CH ₂)	δ(CH₃)	υ(C-C) δ(CH)	δ(CH₃) δ(CH)	υ(C-C)	υ(C-CH₃)	υ(C-C) υ(C-CH)
PP#08/S3	√	✓	✓	✓	✓	✓	√	✓	✓	✓
PP#09/S3	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
PP#10/S3	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
PP#11/S3	✓	✓	✓	✓	✓	✓	√	✓	✓	✓
PP#12/S3	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
PP#13/S3 II	√	✓	✓	✓	✓	✓	✓	✓	✓	✓
PP#14/S3 II	✓	✓	✓	✓	√	✓	1	√	1	✓
PP#15/S3 II	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓

Validation:

- Spectra processing:

 - » Selection of a polymer type "X" (e.g. PP) [All "X" particles are positive cases (+) and the others negative cases (-)]
 - » Exclusion of spectra with biofilm contamination and/or low band intensity
 - » Comparison with reference spectrum using various "Match Methods"* *[Match method - Combination of various comparison parameters]
 - » Collection of match values of positive and negative cases
 - » Elimination of match values outliers

(...)

17

Example | Analytical method

Validation:

• Spectra processing:

» Estimation of the 5th percentile of the Match of positive cases, P5»P, after checking match normality.

 $P5 \text{»P} = \overline{M} - s \cdot t^{\text{one}}$

 \overline{M} – Mean of match values

s – standard deviation of match values

 $t^{\rm one}$ – t-distribution value for cumulative 5% probability and the degrees of freedom of \overline{M} and s.

Validation:

• Spectra processing:

(...)

- » Estimation of the 5th percentile of the Match of positive cases, *P*5»P, after checking match normality.
 - The P5»P is the minimum Match for a TP of 95%
 - » Assuming the normal distribution of the Match of negative cases, it is estimated the probability (FP) of a negative case producing a Match $\geq P5$ »P

19

19

Example | Analytical method

Validation:

• Spectra processing:

(...)

- » Estimation of the 5th percentile of the Match of positive cases, *P*5»P, after checking match normality.
 - The P5»P is the minimum Match for a TP of 95%
 - » Assuming the normal distribution of the Match of negative cases, it is estimated the probability (FP) of a negative case producing a Match $\geq P5$ »P

Validation:

• Spectra processing:

(...)

- » Estimation of the 5th percentile of the Match of positive cases, *P*5»P, after checking match normality.
 - The P5»P is the minimum Match for a TP of 95%
 - » Assuming the normal distribution of the Match of negative cases, it is estimated the probability (FP) of a negative case producing a Match $\geq P5$ »P

21

21

Example | Analytical method

Validation:

- Spectra processing:
 - (...)
- » Estimation of the 5th percentile of the Match of positive cases, *P*5»P, after checking match normality.
 - The P5»P is the minimum Match for a TP of 95%
 - » Assuming the normal distribution of the Match of negative cases, it is estimated the probability (FP) of a negative case producing a Match $\geq P5$ »P
 - » Calculation of LR(+) = TP/FP
 - » Assessing if LR(+) ≥ 19 = 95%/5%

[Assessing the performance of the identification of other polymers]

Validation:

Spectra processing: (...)

Positive cases (n = 86):

P5»P =
$$\overline{M}$$
 − $s \cdot t^{\text{one}}$ (95%; $n - 1$) \Leftrightarrow
 \Leftrightarrow **P5»P** = 0.9232 − 0.023 · 1.66 = 0.8849

 \overline{M} – Mean of match values s – standard deviation of match values $t^{\mathrm{one}}(95\%;n-1)$ – t-distribution value for cumulative 5% probability and the degrees of freedom of \overline{M} and s.

23

Example | Analytical method

Validation:

Spectra processing: (...)

Example | polypropylene identification:

Positive cases (n = 86):

P5»P =
$$\overline{M}$$
 − $s \cdot t^{\text{one}}$ (95%; $n - 1$) \Leftrightarrow
 \Leftrightarrow **P5**»P = 0.9232 − 0.023 · 1.66 = 0.8849

$$P5$$
»P = AVERAGE(#:#) — STDEV(#:#)* T.INV(0.95;86-1)

Validation:

Spectra processing: (...)

Example | polypropylene identification:

Negative cases (n = 203):

$$\overline{M} + s \cdot t^{\text{one}}(\mathbf{FP}; 203 - 1) = 0.8849 = P5 P \Leftrightarrow$$

 $\Leftrightarrow 0.2310 + 0.1040 \cdot t^{\text{one}}(\mathbf{FP}; 203 - 1) = 0.8849$

$$FP = 9.67 \times 10^{-8}\%$$

25

25

Example | Analytical method

Validation:

Spectra processing: (...)

Example | polypropylene identification:

Negative cases (n = 203):

$$\overline{M} + s \cdot t^{\text{one}}(\mathbf{FP}; 203 - 1) = 0.8849 = P5 \text{»}P \Leftrightarrow$$

 $\Leftrightarrow 0.2310 + 0.1040 \cdot t^{\text{one}}(\mathbf{FP}; 203 - 1) = 0.8849$

$$FP = 9.67 \times 10^{-8}\%$$

FP = 1 - T.DIST((P5»P-
$$\overline{M}$$
)/s;n-1;TRUE)

Validation:

Spectra processing: (...)

Example | polypropylene identification: Likelihood ratio:

$$LR = \frac{TP}{FP} = \frac{95\%}{9.67 \times 10^{-8}\%} = 9.8 \times 10^{8}$$

A match above 0.8849 is a very strong evidence of PP polymer.

27

Final remarks

• The quantification of qualitative analysis uncertainty allows an objective method validation

Although not mandatory by laboratory accreditation, it is a very useful tool for laboratories

29

