### PRINCIPLES of MEASUREMENT UNCERTAINTY EVALUATION A Résumé

Alex Williams, Chairman EURACHEM
Uncertainty WG

#### Overview

- **☐** Principles of Measurement
  - **☐** Traceability
  - **☐** Uncertainty
- **☐** Why these are important
  - ☐ For comparison of results
  - ☐ For assessment of compliance
- ☐ How is uncertainty evaluated
  - **☐** Component by Component
  - ☐ Using existing data
  - **■** Numerical Methods
- **☐** Assessment of compliance



# Principles Of Measurement

- ☐ Traceability is to the value of the standard
- **■** Uncertainty on result is:-
- Uncertainty from comparison with standard.
- Plus the uncertainty on the value of the standard.
- Many sources of uncertainty associated with the comparison
- Uncertainty on standard usually small





## Traceability

The value of the result is calculated from

$$y = f(x_1, x_2 \dots x_m) \Big|_{x_{m+1}, x_{m+2} \dots x_n}$$

Where  $x_1$  etc are measured or fixed quantities

Method validation checks the validity of this relationship

Establishing traceability to common references provides the basis for making comparisons but more is required





## Uncertainty of Measurement

Uncertainty should be quantified in a way that is

#### <u>Universal:</u>

• applicable to all kinds of measurements

#### <u>Internally consistent</u>:

• independent of how components are grouped

#### Transferable:

• use uncertainty on a result in derivation of uncertainty on dependant results

#### Procedures set out in

Guide to the Expression of Uncertainty in Measurement (GUM)

# Uncertainty of Measurement

• parameter, associated with the result of a measurement, that characterizes the dispersion of the values that could reasonably be attributed to the measurand

# Standard Uncertainty

Uncertainty of the result expressed as a Standard Deviation.



# Expanded Uncertainty

..interval about the result of a measurement that may be expected to encompass a large fraction of the distribution of values that could reasonably be attributed to the measurand



## **Evaluation of Uncertainty**

The value of the result is calculated from

$$y = f(x_1, x_2 \dots x_m)\Big|_{x_{m+1}, x_{m+2} \dots x_n}$$

Where  $x_1$  etc are measured or fixed quantities

The uncertainty can be derived from the uncertainty on each of these quantities







# **Evaluation of Uncertainty**

$$y = f(x_1, x_2 \dots x_m) \Big|_{x_{m+1}, x_{m+2} \dots x_n}$$

The uncertainty on each of these quantities is combined

As described in GUM

Using the Kragten spreadsheet

**By Monte Carlo simulation** 

# Combination as in GUM/Kragten

- Formally using first order Taylor Series
- Usually by simple rules e.g.
- Sum of quantities  $\sqrt{\text{sum of variances}}$
- Product/Quotient  $\sqrt{\text{sum of relative variances}}$
- More complicated use Kragten –numerical approximation to first order Taylor Series

### Monte Carlo Simulation

- Requires probability distribution of each quantity  $x_i$
- Select a value for each  $x_i$  at random using its probability distribution
- Calculate

$$y_j = f(x_1, x_2 \dots x_m)_{x_{m+1}, x_{m+2} \dots x_n}$$

• Repeat many times  $\approx 10^5$  times

## **Evaluation of Uncertainty**

Using Existing Data

From collaborative method development and validation study

This establishes the validity of

$$y = f(x_1, x_2 \dots x_m) \Big|_{x_{m+1}, x_{m+2} \dots x_n}$$

The reproducibility SD  $s_R$  can be used as the standard uncertainty

#### **Providing!**

## **Evaluation of Uncertainty**

**Using Existing Data** 

☐ The method is operating within its defined scope

□Laboratory bias & precision in line with study data

□All identified sources of uncertainty have been included in the study

More details in the Guide and on use of in house validation and PT data

# Compliance

- Many analyses carried out to check compliance with a specification or regulation
- Necessary to take into account the measurement uncertainty when assessing compliance
- How can this be done?

## Probability Distribution of Value of Measurand



Only possible to give probability that result is above limit



- ☐ This information is provided by the use of "Decision rules
- ☐ Decision rules, enable an "Acceptance Zone" and a "Rejection Zone" to be clearly defined

# For Example

Non compliant with an upper limit if the measured value exceeds the limit by more than 2u

## **Decision Rule**

The batch will be considered to be non-compliant if the probability of the value of the measurand being greater than the limit exceeds 95%.

#### Assessment of compliance requires

- a) a measurement result and a stated uncertainty
- b) a specification giving the upper and/or lower permitted limits of the characteristics (measurands) being controlled
- c) a decision rule that describes how the measurement uncertainty will be taken into account with regard to accepting or rejecting a product according to its specification and the result of a measurement.
- d) a reference to the decision rules used when reporting on compliance

### A Reminder

- This a **workshop** on the revised EURACHEM/CITAC Uncertainty guide
- We need your input
- WG members can be identified by their badges
- Give us your views