GUM/Supplement 1 – Numerical Implementation

Matthias Rösslein Empa - Switzerland

Recent Development in Measurement Uncertainty
Lisbon 2011

MUSE – Measurement Uncertainty Simulation and Evaluation

PhD thesis of

- Dr. Marco Wolf
- Dr. Martin E. Müller

Swiss Federal Institute of Technology (ETH) Zürich

 Prof Walter Gander – Institute of Scientific Computing

7 June 2011

Recent Developments in Measurement Uncertainty

- Sample of the input quantities
- Evaluate the given model for the given values
- Determines an answerimation for the PDF of the output quantities

7 June 2011

Recent Developments in Measurement Uncertainty

Monte Carlo Method

- Sample of the input quantities
- Evaluate the given model for the given values
- Determines an approximation for the PDF of the output quantities

7 June 2011

Recent Developments in Measurement Uncertainty

- Sample of the input quantities
- Evaluate the given model for the given values
- Determines an approximation for the PDF of the output quantities

7 June 2011

Recent Developments in Measurement Uncertainty

7

Monte Carlo Method

Random number generation for the input quantities

- Generation of random numbers of a rectangular distribution U(0, 1)
- Use these random numbers to generate the random numbers of the PDF of an input quantity
- The more random numbers the "better" accuracy
- Basis for an efficient implementation is the efficient generation of uniformly distributed random numbers

7 June 2011

Recent Developments in Measurement Uncertainty

Efficient generation of U(0,1)

- Not every random number generator is suited for MC (e.g. Excel, Microsoft Visual C# etc.)
- Wichman-Hill
 - Proposed by GS1
 - "easy" to implement
 - Period ≈10³⁷
- Mersenne Twister
 - "State of the art"
 - Standard implementation available
 - Period ≈10⁶⁰⁰⁰

7 June 2011

Recent Developments in Measurement Uncertainty

9

Monte Carlo Method

Efficient Evaluation of the Equation of the Measurand

- An evaluation of the model function is needed for each value of the PDFs of the input quantities
- Interpretation of variables/mathematical functions (Parse)
- Time consuming procedures
- Economizing of these procedures means gains in efficiency

7 June 2011

Recent Developments in Measurement Uncertainty

Efficient Evaluation of the Equation of the Measurand

- MUSE uses "block-by-block" evaluation
 - Buffer method with 10⁴ values per block
 - All functions are calculated within these blocks
 - Model function has only the be "parsed" once for each block
- Parse the model function in the so call Postfix notation (reverse polish notation)
 - No bracketing needed

7 June 2011

Recent Developments in Measurement Uncertainty

11

Monte Carlo Method

Efficient Summarization of the Results

- MUSE generates "vast" files with possible values of the PDF of the measurand
 - 108 evaluations ≈ 800 MB (binary)
- GS1 demands to sort all values
- Sorting is very time consuming (especially with a large number of simulations)

7 June 2011

Recent Developments in Measurement Uncertainty

Efficient Summarization of the Results

- Statistical values (e.g. mean, standard deviation) are calculated for each block (block-by-block)
- The overall statistical parameters are calculated as mean values of the parameters of the blocks
- Different to GS1!
 - · Convergence has been proven
 - Optional overall sorting has been implemented

7 June 2011

Recent Developments in Measurement Uncertainty

13

Modeling Concept

- GUM and GS1 describe methods to calculate the measurement uncertainty → calculator kernel
- GUM and GS1 do not provide a basic concept for the dealing with comprehensive and elaborate measurement scenarios
- MUSE supports the advanced user for building, organizing and comprehension of models
 - Stored as pure text files
 - Open and easily adjustable format
 - Strict language definition in XML

7 June 2011

Recent Developments in Measurement Uncertainty

15

Modeling Concept Example: Gauge block calibration The state of the s

Recent Developments in Measurement Uncertainty

7 June 2011

17

18

Modeling Concept Equation of the measurand Landard gauge bit

 $L = \frac{L_s[1 + \alpha_s(\theta - \delta\theta)] + d}{1 + (\alpha_s + \delta\alpha)\theta}$

• Sub-influences

$$\theta = \theta_0 + \Delta$$

$$d = D + d_1 + d_2$$

7 June 2011

Recent Developments in Measurement Uncertainty

Length L

Modeling Concept

Influence quantities as distributions

 $\begin{array}{c|c} <& \text{influence-id="tq"-name="Average-temperature-deviation"} \\ \hline <& \text{distribution>} \\ \hline &<& \text{gauss>} \\ &<& \text{mu>-0.1</mu>} \\ &<& \text{sigma>0.2</sigma>} \\ &<& \text{distribution>} \\ &<& \text{influence>} \\ \end{array}$

7 June 2011

Recent Developments in Measurement Uncertainty


```
Modeling Concept
Complete model of gauge block calibration
      E<mark><model name="length" targetid="l"></mark>
■ <influence id="l" name="Length">
           <formula>(ls * (1 + as * (t - dt)) + d) / (1 + t - (as + da))</formula>
           <influences>
      8
           <influence id="le" pame="Calibration of reference standard">
      æ
             <influence d="d" name="Length of the reference standard">
<influence id="as" name="Thermal expansion coefficient">
      B
             <influence id="t" hame="Deviation of temperature">
      æ
             <influence id="da" name="Difference in expansion coefficient">
      Æ
             <influence id="dt" name="Difference in temperatures">
      Æ
         </influences>
                                                       L_s[1+\alpha_s(\theta-\delta\theta)]+d
          </influence>
                                                            1+(\alpha_s+\delta\alpha)\theta
        </model>
7 June 2011
                            Recent Developments in Measurement Uncertainty
                                                                                              22
```


Modeling Concept

Operating System	Number of Evaluations
Windows Vista	10 ⁶
	10 ⁷
	10 ⁸
Linux (openSUSE)	10 ⁶
	10 ⁷
	10 ⁸

7 June 2011

Recent Developments in Measurement Uncertainty

12

Use of *sensitivity coefficients* for the calculation of the effect of an individual influence quantity on the overall measurement uncertainty

1. Usage of quadratic terms:

$$w_{quad}(x_t) = \frac{c_i^2 u^2(\mathbf{x}_i)}{\sum_{i=1}^n c_i^2 u^2(\mathbf{x}_i)} = \frac{c_i^2 u^2(\mathbf{x}_i)}{u^2(\mathbf{y})}$$

2. Usage of absolute terms:

$$w_{abs}(x_l) = \frac{|c_l|u(x_l)}{\sqrt{\sum_{j=1}^n c_j^2 u^2(x_j)}} = \frac{|c_l|u(x_l)}{u(y)}$$

7 June 2011

Recent Developments in Measurement Uncertainty

25

Beyond GUM-SP1

1) Simulate

- All influence quantities generate random numbers
- Calculate mean and standard deviation for each influence quantity during the simulation

2) Simulate

 A part of the influence quantities are "locked" to the previously calculated mean value (The effect of influence quantities are "silenced")

7 June 2011

Recent Developments in Measurement Uncertainty

Possible Scenarios:

- Turn on only the investigated influence quantity
 - Only the investigated influence quantity generates random numbers

27

7 June 2011

Recent Developments in Measurement Uncertainty

Beyond GUM-SP1

1. Option: Turn on only the investigated influence

Possible Scenarios:

- Turn only the investigated influence quantity off
 - All others generate random numbers as beforehand

29

7 June 2011

Recent Developments in Measurement Uncertainty

Beyond GUM-SP1

2. Option: Turn only the investigated influence off

Beyond GUM-SP1 Classical GUM

• Quadratic terms

$$w_{quad}(x_{l}) = \frac{c_{l}^{2} \mathbf{u}^{2}(\mathbf{x}_{l})}{\sum_{j=1}^{n} c_{j}^{2} \mathbf{u}^{2}(\mathbf{x}_{j})} = \frac{c_{l}^{2} \mathbf{u}^{2}(\mathbf{x}_{l})}{\mathbf{u}^{2}(\mathbf{y})}$$

• Absolut values

$$w_{abs}(x_l) = \frac{|c_l|u(x_l)}{\sqrt{\sum_{j=1}^n c_j^2 u^2(x_j)}} = \frac{|c_l|u(x_l)}{u(y)}$$

Monte Carlo Method

• Turn all off except one

• Turn all on except one

31

7 June 2011

Beyond GUM-SP1

GUF with quadratic terms: $w_{quad}(x_l) = \frac{c_l^2 u^2(x_l)}{\sum_{j=1}^n c_j^2 u^2(x_j)} = \frac{c_l^2 u^2(x_l)}{u^2(y)}$

7 June 2011

Recent Developments in Measurement Uncertainty

- Monte Carlo method
 - Turn one influence quantity off

Influence	MCM - One off		
	Std	Difference	Percent
I	3	6	
ls	2	4 12	33.33%
d	3	4 2	5.56%
as	3	6 0	0.00%
t	3	4 2	5.56%
da	3	4 2	5.56%
dt	3	1 5	13.89%

Important:

- Sum of the der percentage contributions is not 100%
- Direct comparison with the other methods only possible to a limited extent
- Percentage illustrates the maximal reduction of the measurement uncertainty through optimizing this influence

7 June 2011

Recent Developments in Measurement Uncertainty

Thank You Very Much

- Simulation framework MUSE
 - Concepts of GS1 and additional new approaches realized in one framework
 - Entire implementation in C/C++
 - Robust long-run behavior (memory usage & computational time)
 (MUSE: Computational aspects of a GUM-supplement 1 implementation, Metrologia, 45, p586-593, 2008)
- Structured Modeling in XML
 - Stored in a pure text file
 - Open and easy complemental format
 - Strict language definition in XML
- Beta version available on: http://sourceforge.net/projects/freemuse/files/

7 June 2011

Recent Developments in Measurement Uncertainty