## **Model for Uncertainty Evaluation:** A Practical Approach in the **Certification of CRM**

Performing certification and homogeneity test simultaneously

June 6, 2011

Eurachem/CITAC Uncertainty Workshop 2011 at Lisbon, Portugal

Byungjoo Kim, Euijin Hwang, JongOh Choi, Hun-Young So Korea Research Institute of Standards and Science





#### Introduction (1)



#### Current Model for a batch characterization of CRM in ISO G 35

$$x_{\rm CRM} = x_{\rm char} + \delta x_{\rm bb} + \delta x_{\rm sts} + \delta x_{\rm lts}$$
 (1)

 $x_{CRM}$  denotes the property value;

denotes the property value obtained from the characterization of the batch or, in the case of a single artefact characterization, the property value obtained for the artefact;

 $\delta x_{\rm bh}$  denotes an error term due to the between – bottle variation;

 $\delta x_{sts}$  and  $\delta x_{tts}$  are error terms due to the short-term and long-term instability.

Usually, homogeneity and stability studies are designed in such a way that the values of these error terms are zero, but their uncertainties may not

#### Uncertainty relationship of CRM certification (ISO G 35)

$$u_{\rm CRM} = \sqrt{u_{\rm char}^2 + u_{\rm bb}^2 + u_{\rm sts}^2 + u_{\rm lts}^2}$$
 (2)

 $u_{CRM}$  uncertainty of a certified value;

uncertainty from the characterization of the batch

 $u_{\rm bb}$  uncertainty due to the between – bottle inhomogeneity;

 $u_{\rm sts}$  and  $u_{\rm lts}$  are uncertainties due to the short-term and long-term instability.

<sup>\*</sup> Assuming independence of the variables in Eq. 1

Review of the model of ISO G 35 (Eq. 1)

$$x_{\text{CRM}} = x_{\text{char}} + \delta x_{\text{bb}} + \delta x_{\text{sts}} + \delta x_{\text{lts}}$$

$$x_{\text{CRM}} = x_{\text{char}} + (x_{\text{mean}} - x_{\text{char}}) + (x_{\text{sts}} - x_{\text{char}}) + (x_{\text{lts}} - x_{\text{char}})$$
 (3)

"Usually, the homogeneity and stability study are designed in such a way that the error terms are zero and their uncertainties are not" [1],  $x_{lts}$  and  $x_{sts}$  in Eq. (5) are neither obtained nor utilized in the calculation of the value of the CRM.

- Usual practice of chemists for CRM characterization
  - At least 10 bottles selected from a batch
  - · Use a method with highest metrological quality to measure the selected bottles (once or multiple times per bottle) for simultaneous characterization and homogeneity assessment
    - \* the stability terms are assumed to be zero for an initial certification (T=0)

$$x_{\mathrm{CRM}} = x_{\mathrm{char}} = x_{\mathrm{mean}}$$
  $u(x_{\mathrm{mean}}) = u(x_{\mathrm{char}}) = \sqrt{u_{\mathrm{method}}^2 + u_{\mathrm{bb}}^2} \Rightarrow u'_{\mathrm{char}}$ 

$$u_{\text{CRM}} = \sqrt{u_{\text{char}}^2 + u_{\text{bb}}^2 + u_{\text{sts}}^2 + u_{\text{lts}}^2} = \sqrt{u_{\text{char}}^2 + u_{\text{sts}}^2 + u_{\text{lts}}^2}$$
(4)

Park et al. Accred Qual Assur (2011) 16:263-266; Kim et al. Anal Bioanal Chem (2010) 398:1035-1042

Better Standards, Better Life (#)

## eneral model and uncertainty evaluation

KRISS

◆ General model of ISO G 35 (Eq. 1) with the consideration of long-term stability

$$Y = X(1+b'T) \tag{5}$$

Y = decreased value of CRM at a time T due to the degradation

X = initial value of CRM

= constant relative degradation rate as a function of time T

T = time elapsed since initial certification.

Basic concept : Initial certification (characterization & homogeneity assessment)

$$\rightarrow$$
 at  $T=0$ ,  $X=X_{CRM}=X_{char}$ 

Uncertainty relationship

$$u_{\rm CRM} = \sqrt{u_{\rm char}^2 + u_{\rm bb}^2 + u_{\rm sts}^2 + u_{\rm lts}^2} = \sqrt{u_{\rm char}^2 + u_{\rm sts}^2 + u_{\rm lts}^2}$$
 (6)

$$u(x_{\text{mean}}) = u(x_{\text{char}}) = u'_{\text{char}} = \sqrt{u_{\text{method}}^2 + u_{\text{bb}}^2}$$
 (7)

#### example of initial certification at T = 0





### For certification and homogeneity assessment



GC/MS or LC/MS measurement (3 ~ 6 runs for all extracts and IR STD)

Better Standards, Better Life (#)



## kample results from initial certification at ${\cal T}$ :

#### For certification and homogeneity assessment

| Bottle No.                                    | Concentration, $X_j$ (mg/kg) | u <sub>method, A</sub><br>(mg/kg) | u <sub>method, B</sub><br>(mg/kg) | u <sub>method</sub><br>(mg/kg) |
|-----------------------------------------------|------------------------------|-----------------------------------|-----------------------------------|--------------------------------|
| 1                                             | 0.4591                       | 0.0021 (v=3)                      | 0.0035 (v=12)                     | 0.0040 (v=14)                  |
| 2                                             | 0.4576                       | 0.0026 (v=3)                      | 0.0034 (v=12)                     | 0.0043 (v=12)                  |
| 3                                             | 0.4567                       | 0.0023 (v=3)                      | 0.0034 (v=12)                     | 0.0041 (v=14)                  |
| :                                             | :                            | :                                 | :                                 | :                              |
| 10                                            | 0.4534                       | 0.0025 (v=3)                      | $0.0034~(\nu=12)$                 | $0.0042 \ (v=13)$              |
| Mean(X <sub>mean</sub> ) / Pooled uncertainty | 0.4546                       | 0.0026 (v=30)                     | 0.0034 (v=12)                     | 0.0043 (v=26)                  |
| SD (S <sub>bb</sub> )                         | 0.0045 (v=9)                 |                                   |                                   |                                |

$$u_{\text{method}} = \sqrt{u_{\text{method, A}}^2 + u_{\text{method, B}}^2}$$
 (8)

#### Incertainty evaluation for initial certification



$$u'_{char} = \sqrt{u_{\text{method}}^2 + u_{\text{bb}}^2} = \sqrt{u_{\text{method,A}}^2 + u_{\text{method,B}}^2 + u_{\text{bb}}^2}$$
(9)

 $u_{\text{method}}$  vs  $S_{\text{bb}}$  (between bottle standard deviation)

$$S_{\rm bb} = \sqrt{S_{\rm r}^2 / n + S_{\rm bb}^2} = \sqrt{u_{\rm method,A}^2 + u_{\rm bb}^2}$$
 (10)

- s<sub>r</sub> repeatability of the measurement method
- $u_{\rm method,A}$  Type A uncertainty of the measurement method
  - $\rightarrow s_r/n = u_{\text{method, A}}$
  - $\rightarrow s_{bb} = u_{bb}$

Choi et al. Accred Qual Assur (2003) 8:13-15 & 205-207

Calculation of u char from umethod and Sbb

$$u'_{\text{char}} = \sqrt{u_{\text{method,B}}^2 + S_{\text{bb}}^2}$$
 (11)

Better Standards, Better Life (#)



# cample results from initial certification at

For certification and homogeneity assessment

| Bottle No.                                                                | Concentration, $X_j$ (mg/kg) | <b>u</b> <sub>method, A</sub><br>(mg/kg)      | u <sub>method, B</sub><br>(mg/kg)      | u <sub>method</sub><br>(mg/kg) |  |
|---------------------------------------------------------------------------|------------------------------|-----------------------------------------------|----------------------------------------|--------------------------------|--|
| 1 (12)                                                                    | 0.4591                       | 0.0021 (v=3)                                  | 0.0035 (v=12)                          | 0.0040 (v=14)                  |  |
| 2 (40)                                                                    | 0.4576                       | $0.0026 (\nu=3)$                              | 0.0034 (v=12)                          | 0.0043 (v=12)                  |  |
| 3 (68)                                                                    | 0.4567                       | 0.0023 (v=3)                                  | 0.0034 (v=12)                          | $0.0041~(\nu = 14)$            |  |
| :                                                                         | :                            | :                                             | :                                      | :                              |  |
| 10 (264)                                                                  | 0.4534                       | $0.0025~(\nu=3)$                              | 0.0034 (v=12)                          | 0.0042 (v=13)                  |  |
| Mean(X <sub>mean</sub> ) / Pooled uncertainty                             | 0.4546<br>included           | 0.0026 (v=30)<br><i>U</i> <sub>method,A</sub> | 0.0034 (v=12)<br>u <sub>method,B</sub> | 0.0043 (v=26)                  |  |
| SD (S <sub>bb</sub> )                                                     | 0.0045 (v=9)                 |                                               |                                        |                                |  |
| Comb. $u(X_{\text{mean}})$                                                | →0.0057 (v=17) <             | $u'_{\rm char} = \sqrt{u_{\rm method,}^2}$    | $\overline{B} + S_{bb}^2$              |                                |  |
| Expanded Uncertainty 0.0120 ( $k = 2.11$ , with 95 % level of confidence) |                              |                                               |                                        |                                |  |

#### Pending issues in uncertainty of stability



General model of ISO G 35 (Eq. 1) with the consideration of long-term stability

$$Y = X(1 + b'T)$$

$$u_{\text{CRM}} = \sqrt{u_{\text{char}}^2 + u_{\text{bb}}^2 + u_{\text{sts}}^2 + u_{\text{lts}}^2} = \sqrt{u_{\text{char}}'^2 + u_{\text{sts}}^2 + u_{\text{lts}}^2}$$
(5)

- Usual practice for the stability assessment
  - CRM production plan is designed that the stability terms are to be zero  $(b' \cong 0)$
  - · Stability assessment is usually done by analyzing multiple bottles of the CRM by the method used for the initial certification
  - Selecting transportation method/conditions to guarantee stability of the CRM  $(u_{sts} \approx 0)$ . Van der Veen et al. Accred Qual Assur (2001) 6:257-263
- Uncertainty of long-term stability in ISO G35

$$U_{lst} = U(b) \cdot XT$$

- $u_{\rm lts}$  in this equation contains  $s_{\rm bb}$  and  $s_{\rm r}$
- In the absence of trend,  $u_{lts}$  is near to zero if  $s_{bb}$  and  $s_r$  are excluded

Better Standards, Better Life (#)



## es for Long-term stability assessment



Van der Veen et al. Accred Qual Assur (2001) 6:257-263

In cases, not significant statistically or otherwise relevant trend in the property value has been observed

- Isochronous stability study
  - All measurement can be carried out in one run, with one calibration (goof repeatability)
  - Problem : providing data at the end of study Instability at the reference temperature is not guaranteed
- Classical stability study
  - Measuring sample as a function of time
  - Problem : need to be carried out under reproducible conditions
- Stability monitoring
  - Using classical design
  - Reconfirming validity of the CRM (X and  $u_{CRM}$ ) at T
- $|X_{\text{CRM}} X_{\text{meas}}| \le k\sqrt{u_{\text{CRM}}^2 + u_{\text{meas}}^2}$
- Information becomes available during the lifetime of the CRM
- Better to use a method which has the same metrological quality with the one used for the initial certification
- Data can be used for re-evaluation of u<sub>CRM</sub>
- Semi-continuous stability testing
- With prior knowledge of long-term stability of a specific type of CRM
  - In absence of trend,  $u_{lts}$  can be set to zero
  - Still, stability monitoring is needed to be carry out.

Conclusion KRISS

- Model for uncertainty evaluation of CRM is proposed for simultaneously assessing property value and inhomogeneity
- Basic model Y = X is derived from the general model  $Y = X(1+b^T)$  as the special case of T=0, instead of  $x_{CRM} = x_{char} + \delta x_{bb} + \delta x_{sts} + \delta x_{lts}$
- $u_{\rm bb}$  is shown to be one of the uncertainty components of  $x_{\rm char}$
- Uncertainty due to instability of the CRM can be evaluated in many ways depending on the situations, and further discussion is needed in metrology community

Better Standards, Better Life (#)

