EURACHEM/CITAC Guidance on Metrological Traceability

Alex Williams
Chairman EURACHEM/CITAC Measurement
Uncertainty & Traceability Working Group

Traceability is easy

All results are traceable

To what is the issue!

Obtaining a traceable measurement

- Value of the result for an unknown is obtained from a comparison with the value of a calibration standard e.g. measurement of mass
- Uncertainty of the result is the uncertainty of this comparison plus the uncertainty of the standard
- Value of the result is traceable to the value of the calibration standard
 - provided the method used for the comparison is valid and its uncertainty is known
- The value of the standard used must be traceable to agreed (international) standards
 - allows results to be comparable across space and time

Validated Method

Traceability established for each parameter in the method

By calibration with appropriate standards.

$$y = f(x_1, x_2 ... x_m) \Big|_{X_{m+1}, X_{m+2} ... X_n}$$

- The sole requirement for y to be fully traceable* is that $x_1...x_n$ are traceable or defined values
- Calibration of $x_1...x_n$ with appropriate standards is sufficient

*other than MU requirements

What is an appropriate standard?

Suitable unit preferably SI

Suitable uncertainty

Degree of control - 3 categories

• <u>Green category:</u> very small effect on the uncertainty minimal degree of control required,

Normal, muture laboratory equipment, reagents, etc able to provide appropriate references.

volume (beaker/measuring cylinder), time (wall clock), length (ruler), concentration (approx. 6 mol L⁻¹ HCl), temperature (room temperature)

<u>Amber Category:</u> significant effect on the uncertainty, significant degree of control.

Provided by appropriately maintained and calibrated equipment for common measurements (mass, volume, instrument response, etc). QA system of a properly equipped and appointed laboratory should provide appropriate references. volumetric flask, analytical balance, common chemical reagents of specified concentration/purity (conc. nitric acid, acetonitrile HPLC grade)

Red category: also a significant degree of control, but analyst required to select the 'special' references needed to carry out a particular SOP. materials with specified values (concentration/purity) used for instrument calibration, matrix reference materials used for QC, physical properties (molecular masses), individually calibrated glassware

$$y = f(x_1, x_2 \dots x_m) \Big|_{X_{m+1}, X_{m+2} \dots X_n}$$

- The sole requirement for y to be fully traceable* is that x₁...x_n are traceable or defined values
- Calibration of $x_1...x_n$ with appropriate standards is sufficient

*other than MU requirements

Example

Meeting the traceability requirements of ISO 17025: An analyst's guide (third edition)

http://www.nmschembio.org.uk

Determination of potassium iodide in vitamin tablets

Outline of Method

Weigh the ground sample into a crucible

Add \approx 7 g potassium carbonate, mix, cover with further \approx 10 g Place in a muffle furnace at 675 C to 700 C for 25 minutes Cool, add \approx 20 mL of water, heat to boiling, filter into a flask Make the volume to \approx 200 mL

Add 7 mL bromine water to convert to potassium iodate

Add 2 mL phosphoric acid to remove excess bromine

Add 5 mL 16% w/v KI solution to yield iodine

Titrate with 0.01 mol L⁻¹ sodium thiosulfate

Write down and understand the equation used to calculate the analytical result

$$KI(\mu g/tablet) = \frac{(T-B) \times A \times M \times MW_{KI} \times 10^{6}}{6 \times 1000 \times W}$$

Titre (mL)

B Blank titre (mL)

A Mean weight of one tablet (g) (mean of 20 tablets)

MW_{KI} Relative molecular mass of KIW Weight of sample used (g)

M Molarity of sodium thiosulfate determined by standardisation

against potassium iodate (mol L-1):

$$M \text{ (mol L}^{-1}) = \frac{\text{mass of KIO}_{3} \times \text{Purity of KIO}_{3} \times 1000 \times 6}{\text{MW}_{\text{KIO}_{3}} \times \text{volume of Na}_{2}\text{S}_{2}\text{O}_{3}}$$

MW_{KIO₃} Relative molecular mass of KIO₃

Obtain suitable traceable references for each of these.

Target uncertainty is 4 %
Therefore uncertainty on each these references < 1 %

Start with the very simple but necessary ones These should be provided by laboratory QA system

Titre

Approximately 10 mL volume

Readily provided by class A burette with 0.05 mL graduations

Mass

Mass of 1 tablet approximately 1 g 4-figure analytical balance

Molecular masses

Obtainable from up-to-date tables with an uncertainty of < 0.1%

Molarity of the sodium thiosulphate

Commercially produced volumetric standard solution. For example, a 0.1 mo1.1:¹ sodium thiosulphate solution, with a tolerance factor of ±0.001 mo1.1:¹(i.e. ±1%) readily available.

Alternatively, the molarity of the sodium thiosulphate solution could be established experimentally by standardisation against potassium iodate.

Analytical grade potassium iodate -> 99.9% purity more than adequate.

In certain critical applications (e.g. where an analysis may be part of a legal dispute), the use of a CRM might be preferable, since there is less scope for criticism of a result.

Required degree of control for values in equation

```
T sample titre (mL)
B blank titre (mL)
A mean weight of one tablet (g)
W weight of sample used (g)
MW<sub>KIO<sub>3</sub></sub> relative molecular mass of KIO<sub>3</sub>
MW<sub>KI</sub> relative molecular mass of KI
M molarity Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>
mass of KIO<sub>3</sub> (g)
purity of KIO<sub>4</sub>
```

volume of sodium thiosulphate (mL)

volumetric glassware analytical balance

calculated from tables

standardised using KIO₃
analytical balance
reagent with required purity &
uncertainty
volumetric glassware

All values in equations are in either the amber or red category

Required degree of control for equipment

- Fused silica crucibles, 50 mL capacity, 57 mm diameter
- Filter papers, Whatman No. 541, 18.5 mm diameter
- Oven temperature

Summary (1)

- Write down the equations used to calculate the analytical result
- Identify any 'reagents' or equipment with specified values
- Identify the fixed conditions used in the method
- Obtain appropriate 'stated references' to which the above values may be related or traced
- An appropriate reference has a stated value in the required unit with acceptable uncertainty

Summary (2)

- Traceability to appropriate 'stated references' provides the uncertianty' that is required when the SOP is carried out
- The required uncertianty is that which is fit for purpose

the smallest possible uncertainty is not always necessary and consequently the highest level stated reference is not always necessary

More details and Examples

Meeting the traceability requirements of ISO 17025: An analyst's guide (third edition)

http://www.nmschembio.org.uk