

Chemometrics in method validation – why?

Jone Omar 10th May 2016, Gent Eurachem 2016

Joint Research Centre

the European Commission's in-house science service

Early career scientist - Who

PhD in analytical chemistry in 2013 'New analytical strategies for the characterization of bioactive compounds'

Early career scientist - Who am I?

Since 2013 Research fellow in the JRC-IRMM

Outline

- Chemometrics in method validation-why?
- Briefly, what is chemometrics
- Where can we apply chemometrics, how?
- Applicability of chemometrics, some examples
- Conclusions

Chemometrics in method validation - why?

Where can we apply chemometrics?

DoE for getting the best /optimum analyte disposition

Sample preparation

DoE for getting the best working conditions in our method & validate

Instrumenta method

Multivariate data or image analysis

Data treatment

What is DoE? And what advantages does

Design of Experiments = DoE

Optimisation Design – Central Composite Design (CCD)

Optimum conditions of the system and the interactions among the parameters

Maximum information - minimum N° of experiments Interaction between parameters

Applicability of chemometrics, some examples

Example 1: characterisation of nan

Optimise the **dispersion** of TiO₂ into minimum dispersible units

Focused Ultrasound

Smallest particle size

Example 1: characterisation of nanomaterials

Optimise an AF4 method that can **separate** a polydisperse TiO₂ material

FFD - Pareto diagram with the significant variables

Variables to be studied in a CCD

Fractogram of TiO₂ under optimised conditions

Example 2: volatiles

Develop & optimise a **quantitative method** for extracting aromas from plants by means of SFE or FUSE

- 1) Screening FFD
- 2) Optimisation CCD

15 volatiles

Highest amount = Value of interest

Example 2: volatiles & antioxidants

Optimise a GCxGC-MS **separation method** that suits all volatiles

Highest intensity = Value of interest

GCxGC-MS microfluidic modulator

Laser 785 nm

Optimise the **measuring conditions** of a Raman method

We look for the highest signal of the spectra
Without burning the sample
The shortest acquisition time with an acceptable signal/noise ratio

16 J.Omar, et al. Journal of Raman Spectroscopy 43 (2012) 1151-1156, Quantitative analysis of Essential oils from rosemary in virgin olive oil using Raman spectroscopy and chemometrics

Develop a **quantitative Raman** method for volatiles in olive oil

Wavenumber range

Combinations of pre-processings

Develop a quantitative Raman method for volatiles in olive oil

Wavenumber range

150-800cm ⁻¹

630-660cm ⁻¹

Combinations of pre-processings

SFE 3

SFE 5

SFE 20

SFE 10

HD1

Example 4: deterpenation of can

Develop & optimise a **deterpenation method** for extracting aromas & cannabinoids from cannabis by means of SFE or FUSE

- 1) Screening to see feasibility FFD
- 2) Optimisation to get quantitative conditions CCD

Example 4: deterpenation of cannabis

MCR-ALS to deconvolute the co-elutions by means of MS information

21 J.Omar, et al. Talanta, 121 (2014) 273-280, Resolution of co-eluting compounds of Cannabis Sativa in GCxGC-MS detection with Multivariate Curve Resolution-Alternating Least Squares

Elution time 1 (min)

10

Example 5: authentication of cocc

European

Commission

Develop a **model for authentication** of coccidiostats in NIR & MIR

Difficult to distinguish with the naked eye, model created by PCA and validated

Example 5: authentication of cocc

Develop a **model for authentication** of coccidiostats in NIR & MIR

J.Omar, et al. Journal of Food Additives and Contaminants, Part A, 32 (2015) 1464-1474.

Differentiation of coccidiostats-containing feed additives by Mid and Near Infra-Red Microscopy

Example 6: allergens in cookies

Develop & optimise an extraction + digestion method for MS based quantification of milk & egg allergens in food products.

Can one method suit all?

18 peptides to monitor compromise needed

Conclusions

- -Time and money saving
- -Interactions of parameters visible
- -Applicability to many fields / matrixes
- -Optimised methods will lead to better figures of merit

Acknowledgements

University of the Basque Country

Joint Research Centre

Standards for Food Bioscience

Stay in touch

Jone.OMAR-ONAINDIA@ec.europa.eu

@Jone_OO

JRC Science Hub: ec.europa.eu/jrc

