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There is no such thing like a specific analytical method
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Why multivariate?

Non-selective signals

Many signals (quasi) simultaneously

Image compression/comprehension/analysis

More analytes/measurands at the same time

Faster than classical procedures

New analytical problems become accessible
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Univariate Calibration

Y = X B
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X, signals Y, conc.
B

inverse sensitivity



Univariate Calibration
Y = X B
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Univariate Calibration
two signals, one measurand

Y = X B
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Multivariate Calibration
two signals, two measurands

Y = X B
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Multivariate Calibration
two signals, two measurands

Y = X B
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Classical Regression

Y = X B
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Classical Regression

Y = X B
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Classical Regression

Y = X B
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Classical Regression vs. PLS
(partial least squares)

Y = T B Q´
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X, spectra Y, conc.

BP´

W´

Q´

T U

adapted from Geladi and Kowalski, 1986



Purpose Principle Measurand (SI ?????)
Adulteration/authenifi
cation of coffee

FT-IR & FT-NIR Glucose, starch, chichory, barley, …

Composition of coffee FT-NIR caffeine, theobromine, theophylline, 
moisture, ash, lipid

Degree of roasting of
coffee

FT-NIR Effect of roasting, prediction of
roasting degree

Waste water
characterization

UV-vis Total suspended solids, chemical
oxygen demand (COD)

Honey 1H-NMR, HPLC-UV Origin and phenolic compounds

Olive oil/ adulteration PTR-MS Botanical origin

Olive oil SESI-MS Geographical origin
Cheese HS-PTR-MS Geographical origin
Apples, plums, 
tomato, mushrooms

Backscattering
images

Firmness and elastic modulus

Banana Backscattering
images

Ripeness and chilling injury

Tablets, capsules,
liquids, suspensions

Raman Active pharmaceutical ingredient (API)
content
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Example: P in various steels by OES

Trace element
699 standard samples
Multielement procedure
Signal generation process very complex
Expansion to non-linear effects
Linear model from 140 variables
Variance/bias trade-off gives (only) 13 
of those 140 variables
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Explain variability of concentrations
in terms of signal and matrix

cA = f (Ij, ci)
Concentration of an analyte is function of
(potentially) all sensor signals and
(potentially) all constituents in the sample
Left side: predicted concentration
Right side: „variables“
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Consequences
in complex samples

multivariate 
calibration

Multiple 
„sensors“ per

sample

o.k.

o.k.

Effect
acceptable ?

o.k.
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univariate
calibration

One „sensor“ 
per sample

o.k.

Sufficient
selectivity ?

Not reliable

o.k.



Validation 
as a sampling problem

Y = X B
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Effect of four selection procedures
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Westad & Marini, 2015



Variance/bias trade-off:
optimum from cross-validation

Select some of
the standards
and predict
others
13 variables 
from a total of
140 are left
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Consequence of bias/variance
trade-off:

In calibration, we cannot distinguish
between systematic and random errors

Tragedy for quality assessment?
No, we work with a „combined effect“ for
measurement uncertainty
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Measurement of P in steels
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General problems with complex
samples

Require complex calibration (or superb 
selectivity/separation)

Little insight
Lack of intuitivity
Highly variable results of calibration
(but not necessarily on predictions):

Size of „coefficients“
Variables selected

© W. Wegscheider, Dublin 2018



© W. Wegscheider, Dublin 2018

Outline
Historical reminescence: how it all started
Univariate – multivariate calibration
Selectivity – specificity – solvability
Current applications (analytes, signals, 
matrices, purpose)
Bias vs. variance in calibration
Predictive, parsimonious, explanatory models
Uncertainty, control charts and traceability
Conclusions



Calibration is only one step…
…. we must seek understanding

Predictive
Parsimonious
Explanatory
Beware of lurking variables and
spurious correlations
Consider influential observations
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Quality of prediction and
indicators

Quality of prediction: RMSECV …. Root 
mean squared error of cross validation
Indicators: which variables are
important for prediction

VIP: modelling power on x and y
X-weight… describes covariance of x and y
SR… selectivity ratio: influence on y
OR… orthogonal ratio: non-influence on y
Reproduced correlation
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Model data: XRF on sediments
Advantage: „completely“ understood on 
basis of first (physical) principles
Remaining problems: inhomogeneity, 
mineralogical effects, grain size
distribution
Scientific background is geochemical
Are there any accounts of the Nb-
anomaly?
COLTAN research
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Two model elements: Ti and Pb
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DataSet: Sediments, Pb.l(fit) vs Pb

Created: 09/15/15 08:56:40
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PLS on Ti and Pb
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CTi meas vs CTi pred

CPb meas vs CPb pred
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Comp. 1 (57.9%)
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Ti indicators: 
black
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Pb vs Cu: spurious correlation
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Created: 
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Where do spurious correlations
come from?

Calibration models depend
on the physics/chemistry of the
measurement process, but also
on the internal correlations in the
calibration set (here: from geochemistry)

We actually have a sampling problem
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Regression for classification

Y = X B
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Origin of Styrian pumpkin seed oil
PGI (protected geographical indication)
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Zettl et al., 2017



148 oils, 37 elemental variables,
external validation set from Austrian 

Food Authority
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Zettl et al., 2017
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NIR spectra of brick cheese
Infometrix Applications Overview 1996
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„best“ wavelength
for moisture



Calibration on wavelength 9
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useless



Multivariate prediction of moisture
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h …… leverage
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h …… leverage vs. spectra
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IUPAC Approach to „uncertainty“
Pure Appl. Chem. 78, No. 3, pp. 633–661, 2006

variance of prediction

leverage * var. of conc. of standards

leverage * var. of (signals/sensitivity)

variance of (signals/sensitivity)
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Noise of
2% added
to

Spectra of
standards

Spectra of
unknowns

Concen-
tration of
standards

Sum
(IUPAC)

All three

Effect (in 
%moisture)

0.194 0.429 0.070 0.600 1.21

Effect as extra-RMSEP 
in % moisture
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o The IUPAC-proposed summation does not work

o Expected reason: no allowance for significant correlations

o Full Monte-Carlo procedure is required instead

RMSEP… root mean squared error of prediction



Multivariate control charts
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Kourti & MacGregor, 1995



Automation to achieve
„traceable“ calibration models

a. Expand variables for (potential) non-
linearities

b. Derive latent variables
c. Cross-validate for good variance/bias

balance
d. Crop all superfluous variables
e. Highlight influential observations
f. Apply calibration model
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Conclusions

Multivariate calibration will be even more
prominent in the future
So far, too little has been invested in the
understanding of the calibration models
Traceability (and reproducibility) of calibrations
require a fixed and hopefully automated
protocol
Many univariate QC measures are not useful
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