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= Non-selective signals

Why multivariate?

= Many signals (quasi) simultaneously

= Image compression/comprehension/analysis
= More analytes/measurands at the same time
= Faster than classical procedures

= New analytical problems become accessible
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Univariate Calibration

Y = X B ., crse sensitivity

=

X, signals Y, conc.
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Univariate Calibration

Y=XB
- O _
* g N
X, signals Y, conc.
A A
® @

X, sighals
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r Univariate Calibration 1

two signals, one measurand

Y=XB
K> ;
B
X, signals Y, conc.
AA A
et t

X, sighals

Y, conc.
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r Multivariate Calibration 1

two signals, two measurands

Y=XB
K O
B
X, signals Y, conc.
h O
ee 0O QP
Y2,caonc. 4 260
SateYeioN
° @
O
O O
O O
O

© W. Wegscheider, Dublin 2018 Y1 y CO n C .



r Multivariate Calibration 1

two signals, two measurands

Y=XB
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Classical Regression

signals Y =XB analytes

>

X, signals Y, conc.

samples
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Classical Regression

signals

X, signals

samples
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Y=XB

analytes

>

# of samples > # of sensors

Y, conc.

N
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signals

Y =XB analytes

\ 4

X, signals

>

Y, conc.

samples
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# of samples < # of sensors

N



Anal. Chem. 1885, 57, 63-69 "
Spectrophotomefric Multicomponent Analysi ied to Trace
Metal Determinations

namely, in the ultraviolet, visible, and infrared speciral range.
Limitations imposed by data rldwtlmmhﬂnﬂhmdm
ordinary multiple regression are shown to be overcome by
means of partial least-squares analysis In latent variables,

Quantitative spectrophoiometric analysis of mixture compo-
mnln Is 1nlurod hr lyﬂm 1mrllh low wral aloetlvlty.

mwwmmuoum

ordinary multiple regression are shown to be overcome by
means of partial least-squares analysis In latent varlables.

band intensity ratios, number of wavelenglhs, number of
components, number of calibration mixtures, time drift, or
deviations from Beer's law on the analytical resull has been
evaluated under a wide range of conditions providing a basis
to search for new systems applicable to spectrophotometric
mullicomponent analysis. The practical utliity of the method
is demonstrated for simultanecus analysis of copper, nickel,
coball, iron, and palladium down to 2 X 10~* M concentrations
by use of their diethyidithiocarbamate chelate complexes with
relative errors less than 6%,

ordjnuy MR even iz MSe that deviations from linearity
or bg a0 changes must not be considered explicitly.

Prmctpul component analysis (PCA) is used to model the

absorbance matrix obtained from multivariate calibration
measurements into principal components that are then fitted
to the concentrations of the components by ordinary regression
methods.

A newer approach describes additionally the concentration
matrix by principal components and relates these components
to the principal components of the absorbance matrix. This
method known as partial least squares analyses (PLS) (14)
is preferable to conventional PCA as the information from
the calibration solution is better used as it reflects a criterion
of the similarity of the sample to the calibration set and as
the method is easily implemented on minicomputers (12, 14).

Applications of the PLS method for SMA were described
for spectrofluorimetry (I4) and near-infrared (near-IR)
spectroscopy {15). The present paper demonstrates the ad-



SINGLE- AND MULTI-CHANNEL DETECTION FOR GENERALIZED |
QUANTITATIVE ANALYSIS IN CASES OF UNRESOLVED
CHROMATOGRAPHIC PEAKS

MATTHIAS OTTO
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SUMMARY

Cnmputerlzed quantlf ication of compunents under cwerlapp mg chrumatographlc peaks

can be applied even when there is severe peak overlap, unstable baseline, noisy chromato-
grams or non-linear detector response. Advantages in the quantlflcatmn of fused peaks
by means of multichanhnel detectors are outlined. Present limitations on the quantitative



r Classical Regression vs. PLS
(partial least squares)

Y=TBQ’

X, spectra T U Y, conc.

3
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adapted from Geladi and Kowalski, 1986
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Adulteration/authenifi
cation of coffee

Composition of coffee

Degree of roasting of
coffee

Waste water
characterization

Honey
Olive oil/ adulteration

Olive ail
Cheese

Apples, plums,
tomato, mushrooms

Banana

Tablets, capsules,
liquids, suspensions
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FT-IR & FT-NIR
FT-NIR
FT-NIR
UV-vis

IH-NMR, HPLC-UV
PTR-MS

SESI-MS
HS-PTR-MS

Backscattering
Images

Backscattering
Images

Raman

Glucose, starch, chichory, barley, ...

caffeine, theobromine, theophylline,
moisture, ash, lipid

Effect of roasting, prediction of
roasting degree

Total suspended solids, chemical
oxygen demand (COD)

Origin and phenolic compounds
Botanical origin

Geographical origin
Geographical origin
Firmness and elastic modulus

Ripeness and chilling injury

Active pharmaceutical ingredient (API)
content
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Example: P in various steels by OES

= Trace element

= 699 standard samples

= Multielement procedure

= Signal generation process very complex
= Expansion to non-linear effects

= Linear model from 140 variables

= Variance/bias trade-off gives (only) 13
of those 140 variables
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xplain variability of concentrations
In terms of sighal and matrix

£

= Concentration of an analyte is function of

(potentially) all sensor signals and
(potentially) all constituents in the sample

= | eft side: predicted concentration
= Right side: ,variables"
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Consequences univariate
calibratinn | calibration

In complex samples

Multiple

»Sensors" per
sample
calibrated o.k
expected /
/ \ not calibrated o.k.
numerous
constituents
/ interfering Effect
acceptable ?

not expected

\ not interfering

0.k.
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Validation
as a sampling problem
signals Y=XB analytes
> >
. B .
calibrate calibrate
monitor monitor
predict predict

samples
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rEffect of four selection procedures1

Westad & Marini, 2015

Kennard-Stone
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r Variance/bias trade-off: 1
optimum from cross-validation

= Select some of N N —_— — — ——
the standards | | | | |
and predict
others > (.006-

= 13 variables
from a total of
140 are left 0.004+

| .......... predlctlon ................ ................

5 10 I 15
# of Factors
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Consequence of bias/variance
trade-off:

= In calibration, we cannot distinguish
between systematic and random errors

= Tragedy for quality assessment?

= No, we work with a ,,combined effect" for
measurement uncertainty

© W. Wegscheider, Dublin 2018
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Measurement of P in steels

.................................................................................
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General problems with complex
samples

= Require complex calibration (or superb
selectivity/separation)

= Little insight
= Lack of intuitivity

= Highly variable results of calibration
(but not necessarily on predictions):
= Size of ,coefficients"
= Variables selected

© W. Wegscheider, Dublin 2018
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Calibration is only one step...
... We must seek understanding

= Predictive
= Parsimonious
= Explanatory

= Beware of lurking variables and
spurious correlations

= Consider influential observations

© W. Wegscheider, Dublin 2018



r A

Quality of prediction and
indicators

= Quality of prediction: RMSECV .... Root
mean squared error of cross validation

= Indicators: which variables are
important for prediction
= VIP: modelling power on x and y
= X-weight... describes covariance of x and y
= SR... selectivity ratio: influence on y
= OR... orthogonal ratio: non-influence on y
= Reproduced correlation

© W. Wegscheider, Dublin 2018
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Model data: XRF on sediments

= Advantage: ,,completely”™ understood on
basis of first (physical) principles

= Remaining problems: inhomogeneity,

mineralogical effec
distribution

S, grain size

= Scientific background is geochemical
= Are there any accounts of the Nb-

anomaly?
= COLTAN research

© W. Weg



Two model elements: Ti and Pb

DataSet: Sediments, Tik(fit) vs Ti

0.000 0.500 1.000 1.500 2,000 2.500
Ti

Crivs lyik
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Created: 09/17/15 07:57:26

Pb.I(NT)

Cpp VS Ipp L

DataSet: Sediments, Pb.(fit) vs Pb
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PLS on Ti and Pb

2.500
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- Ti indicators:
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Pb vs Cu: spurious correlation
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Where do spurious correlations
come from?

Calibration models depend

= on the physics/chemistry of the
measurement process, but also

= on the internal correlations in the
calibration set (here: from geochemistry)

We actually have a sampling problem

© W. Wegscheider, Dublin 2018
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Regression for classification

signals Y =XB membership
> >

1 -1
B 1 -1
1 -1
X, signals L
-1 1
-1 1
-11
samples @@N @%
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Origin of Styrian pumpkin seed oil
PGI (protected geographical indication)

Score plot

Austrian.
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Loading plot b
/U
Y/Ba

j Rb
| Sr/Ba
: r
| Sm/Gd
; 05 0 ' 05 1

PC-1 (85%)

Zettl et al., 2017
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148 oils, 37 elemental variables,
external validation set from Austrian
Food Authority

' — d
Foreign -1

; TN TN
k; g ¥ “-g’l?% g g & g”g

Austrian samples Foreign samples Mixed samples

Predicted origin

SIWSOSd -

0Tt0Sd
OTWITOSd
OTWFIOSd
SWZTOSd

Zettl et al., 2017
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NIR spectra of brick cheese 1

Infometrix Applications Overview 1996

calibration data in bjue
1,6 unknowns in red

_,best” wavelength

1,2

0,8

0,4

WV s e s

Wavelengths and Temperature
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Calibration on wavelength 9

%Moisture
1,4
m
|
1,2 -
1,0 -
0,8 -
0,6
m m
B
0,4 T T T T T T 1
38 39 40 41 42 43 44 45

© W. Wegscheider, Dublin 2018



rMultivariate prediction of moisture1

ub105

® w054 *d0so :

¢ fwere
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h ...... leverage
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r IUPAC Approach to ,uncertainty" 1

Pure Appl. Chem. 78, No. 3, pp. 633—-661, 2006

[s() | = hs? + h(s, /S, ) + (5,15, )’
[S(C)]2 variance of prediction

hs leverage * var. of conc. of standards

h(s./S,)* leverage * var. of (signals/sensitivity)

(s,./S,)* variance of (signals/sensitivity)

© W. Wegscheider, Dublin 2018



r Effect as extra-RMSEP 1

in % moisture

2% added | standards unknowns | tration of (IUPAC)

to standards

%% maoisture)

RMSEHE upAeQt Mean saHaS L& anQlrrediction

0 Expected reason: no allowance for significant correlations

o Full Monte-Carlo procedure is required instead
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Multivariate control charts

)

----- Kourti & MacGregor, 1995
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r Automation to achieve
Jtraceable™ calibration models

—>2 Expan_c! variables for (potential) non-
linearities

b. Derive latent variables
. Cross-validate for good variance/bias

balance
«d. Crop all superfluous variables J
e. Highlight influential observations
r. Apply calibration model

© W. Wegscheider



Conclusions

= Multivariate calibration will be even more

prominent in the future

= So far, too little has been invested in t
understanding of the calibration mode

ne
S

= Traceability (and reproducibility) of ca

ibrations

require a fixed and hopefully automated

protocol

= Many univariate QC measures are not useful

© W. Wegscheider, Dublin 2018
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