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Fraudulent „Fake“ Data - Facts

About 2 % of reseachers have admitted to faking data at 
least once in their careers.

Blurred boundaries between innocent error, 
misunderstandings, avoidable faults, intentional 
“bending” and massive falsification.

Fraud implies intention to cheat.
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Research Misconduct
Official Definition 

“fabrication, falsification or plagiarism 
(FFP) in proposing, performing or 
reviewing research or in reporting 
research results” 

US office of Science and Technology Policy (OSTP)
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Fake Data - Characteristics

Falsified, manipulated data: observations that do not fit the 
desired results are deleted or amended and the variability as a 
whole is reduced.

Fabricated, invented data:  very little variation, total absence 
of outliers, and because of human intervention, a pattern of digit 
preference. Invented distributions tend to be flat, evenly spread 
over a limited range.
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Fake Data - Objective

Falsification / Bending / Data manipulation: to achieve a 
desired result or increase the statistical significance of the findings 
and affect the overall scientific conclusions, to achieve publication, 
or to produce results confirming a particular theory.

The object of most falsifications is to demonstrate a 
“statistically significant” effect that the genuine data 
would not show.
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Fake Data - Objective

Fabrication / Invention of data for non-existent or incomplete 
cases (in clinical studies, market research), usually for financial 
gain.

The most serious cases of fraud are those in which there 
is an expectation of gain in terms of prestige, 
advancement, or money.

Almost never occurs in fields like physics, astronomy and geology.

David Goldstein, 2005 
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Statistical Methods 
for Detecting Fake Data

Look at digit distribution and preferences

Look at variances, standard deviations, percentile 
ranges, range, kurtosis

Multivariate associations - Look for relationships 
that should exist

7Eurachem Workshop Dublin May 2018



Digit Preference – First Digit 
Benford‘s Law

8

▪ Runs against intuition
▪ mainly for counting and measurement data
▪ not for assigned data or numbers influenced by human 

thought
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Benford‘s Law -Examples
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from Theodore P. Hill, 1998



Digit Preference – Terminal Digit

Terminal Digits are supposed to be uniformly distributed as 
they are expected to contain mostly random measurenment 
error.

Humans instinctively do exhibit digit preferences 

Well suited for graphic methods of detection, 
Histogram, Stem & Leaf plot
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Folie 11

Digit Preference – Stem and Leaf Plot

heights of 351 (elderly) women.

Data source: http://what-when-how.com/statistics/skewness-to-systematic-review-
statistics/
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Folie 12

Digit Preference – Histogram
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heights of 351 elderly women.
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104 mountain brushtail possums

9 morphometric measurements

Head length, skull width

Folie 13

Fake Data / Possum Example

Data source: Lindenmayer, D. B., Viggers, K. L., Cunningham, R. B., and Donnelly, C. F. 1995. Morphological 
variation among columns of the mountain brushtail possum, Trichosurus caninus Ogilby (Phalangeridae: 
Marsupiala). Australian Journal of Zoology 43: 449-458. 
https://vincentarelbundock.github.io/Rdatasets/datasets.html

Picture source: http://www.environment.nsw.gov.au/topics/animals-and-plants/native-animals /native-
animal-facts/brush-tailed-possum
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Possum head length / true data
Histogram
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Possum head length / fake data 
Histogram
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Possum head length / true data
terminal digit distribution
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Possum head length / fake data
terminal digit distribution
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Possum skull width/ true data
Histogram
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Possum skull width/ fake data
Histogram
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Mean  56.9 mm
St Dev 3.12 mm 



True data: Possum skull width / 
head length 
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Fake data: Possum skull width / 
head length 
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Fake Data – Risk Factors

Career pressure

„Knowing the answer“

Working in a small team

Working in a field where individual experiments are 
not expected to be precisely reproducible

David Goldstein, 2005
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Fake Data - What to do ?

Increase risk of exposure 

Peer review

Full access to original data

Public data repositories

Better education of statisticians

Devote a significant amount of research funds 
for replications

Automated scanning of publications
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Antonakis‘ 5 scientific diseases

Significosis, an inordinate focus on statistically significant 
results

Neophilia, an excessive appreciation for novelty

Theorrea, a mania for new theory

Arigorium, a deficiency of rigor in theoretical and empirical 
work

Disjunctivitis, a proclivity to produce large quantities of 
redundant, trivial and incoherent works
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“If you copy from one author, it’s plagiarism, 
but if you copy from many, it’s research.” 

Wilson Mizner
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