Overview of Uncertainty from Sampling and the Eurachem UfS Guide (2019)

Michael H Ramsey

School of Life Sciences, University of Sussex, Brighton, UK

Eurachem/Eurolab Workshop, Uncertainty from sampling and analysis for accredited laboratories November 2019. Berlin

Overview

- Sampling as part of the measurement process
- Uncertainty (U) in measurement and sampling -
 - key parameter of measurement (and sampling) quality
 - Brief overview of UfS estimation
- Rationale for revision of UfS Guidance (2019)
- Focus on New Aspects to Guidance
 - 1. Uncertainty Factor explained in my later talk
 - 2. Unbalanced experimental design to reduce the cost of estimating UfS in later talk (by Peter Rostron)
 - 3. Application of UfS estimation to wider range of measurement types e.g. *in situ*, passive and micro-scale measurements *in other talks*
 - 4. UfS estimation using Sampling Proficiency Testing here
- Conclusions

Sampling as part of the measurement process

- In situ measurement techniques sampling integral
 - Place the sensor→ make measurement
 - taking a 'beam' sample at micro scale (e.g. mm or µm)
 - Uncertainty in sampling produces U in measurement value
- Physical sample preparation (in field or lab)
 - e.g. filter, acidify, dry, store, sieve, grind, split
 - is also part of the measurement process
 - and potentially important source of U
- Include both in validation and QC processes

Secondary Ion Mass Spectrometry (SIMS) on quartz, illustrating 5 um beam scale

Analytical Methods Committee (2018) AMC Technical Brief No 84. Beam sampling: taking samples at the micro-scale, *Analytical Methods*, 10, 1100-1102

hand-held portable X-ray Fluorescence

(pXRF) on soil at 5 mm scale

Sampling as part of the measurement process

If objective is to measure true value of analyte concentration (or measurand)

- in **sampling target** (e.g. batch of food, area of soil, a crystal etc.)
- Sampling is included in measurement process
- UfS part of measurement uncertainty (& method validation and QC)

If measurand (or true value) defined solely in terms of laboratory sample

- Primary sampling is not included
- Most users of analytical measurements assume $x \pm U$ apply to target
 - not just to lab sample

Methods for estimating uncertainty of measurement (including sampling)

- What are the options?
 - 1. Empirical methods 'Top down' approach
 - based on replicate measurements (within or between organisations)
 - applicable to any system
 - Examples in the Guide for food (A1, A4), soil (A2) and water(A3)
 - 2. Modelling methods 'Bottom up' approach
 - based on identifying, estimating and summing all of the components = 'Budget Modelling Approach' Example in Guide for top soil (A6)
 - (Kurfurst et al, 2004, Accred Qual Assur., 9, 64-75)
 - sometimes Modelling using Sampling Theory (e.g. Gy's) to estimate components in particulate systems
 - (Minkkinen 2004, Chemometrics and Intelligent Lab. Systems, 74, 85-94)
 - Example in Guide for animal feed (A5)

Budget Modelling Approach to estimating U - Cause & effect diagram

Example A6 for top soil in UfS Guide

US University of Sussex

Budget Modelling Approach to estimating U

Summation of all individual components of uncertainty

-e.g. applied to concentration of Cd and P in field of arable top soils

$$\overline{x}_{\textit{site}} = \overline{x}_{\textit{anal}} \times f_{\textit{b-loc}} \times f_{\textit{strat}} \times f_{\textit{depth}} \times f_{\textit{prep}} \times f_{\textit{dry}}$$

- $\overline{\chi}_{site}$ = measurement result
- \overline{x}_{anal} = mean from the analysis of test samples
- $f_{\text{b-loc}}$ = correction factor for deviation "between locations"
- f_{strat} = correction factor for bias due to sampling strategy
- f_{depth} = correction factor for the "depth effect"
- ullet f_{prep} = correction factor for errors during mechanical sample preparation
- f_{dry} = correction factor for deviation of moisture content

$$u_{\text{site}} = \sqrt{u_{\text{anly}}^2 + u_{\text{b-loc}}^2 + u_{\text{strat}}^2 + u_{\text{depth}}^2 + u_{\text{prep}}^2 + u_{\text{dry}}^2}$$

Explained by Ulrich Kurfürst in Example A6

Modelling using Sampling Theory

Sampling theory of Gy defines 8 sampling errors

- includes 'fundamental sampling error' described by:-

$$\sigma_r^2 = Cd^3(\frac{1}{M_S} - \frac{1}{M_L})$$

 $\sigma_r = \frac{\sigma_a}{a_L}$ = Relative standard deviation of the fundamental sampling error = $u'_{sampling}$

 $\sigma_{\!\scriptscriptstyle a} \! = \!$ absolute standard deviation (in concentration units)

 a_L = average concentration of the lot

d = characteristic particle size = 95 % upper limit of the size distribution

 M_s = Sample size

 M_i = Lot size

Explained by Pentti Minkkinen in Example A5 for animal feed

General relationship: $s^2 \propto 1/m$ – useful in modifying UfS estimated by any method

Empirical estimation of uncertainty: **Statistical model**

$$x = X_{true} + \varepsilon_{sampling} + \varepsilon_{analytical}$$

x = measured value of the analyte concentration in the sampling target

 X_{true} = true value of the analyte concentration in the sampling target

 $\mathcal{E}_{sampling} + \mathcal{E}_{analytical}$ = effects on measured concentration from sampling and analysis

 $\text{Variance of measurement = } \quad s^2_{meas} = s^2_{sampling} + s^2_{analytical}$

- includes between-organisational effects (e.g. sampling & analytical bias)

Standard uncertainty = $u_{meas} = s_{meas}$

Relative expanded uncertainty as % (for 95% confidence) = $U' = 100 \times 2s_{meas}/\bar{x}$

Empirical methods for estimating uncertainty of measurement (including sampling)

	Method	· · · · · · · · · · · · · · · · · · ·	Protocols	Component estimated			
#	description	(persons)		Sampling		Analytic	
				Precision	Bias	Precision	1
1	Duplicates	Single	Single	Yes	No	Yes ³	T :
2	Protocols	Single	Multiple	Between protocols Between samplers		Yes ³	T
3	CTS	Multiple	Single			Yes	res
4	SPT	Multiple	Multiple	Between protocols +between samplers		Yes	

- ¹Analytical bias information may be obtained by including certified reference materials in the analytical run (see Example A2, Appendix A).
- 2Analytical bias is partially or completely included in collaborative exercises where multiple laboratories are involved.
- ³In these approaches, precision is estimated under repeatability conditions
- Examples of Method #1 (see later talk) and Method #4 (using SPT) discussed here

Rationale for revision of UfS Guidance

- Second Edition of the Eurachem UfS Guide*
 - initiated to update, explain and integrate several recent research developments
 - whilst leaving most of the text unchanged
- Retains the same basic approach and structure as First Edition of 2007
 - based on concept that primary sampling as first part of measurement process
 - two main approaches to estimating UfS
- · Six worked examples retained
 - demonstrate both approaches
 - across a range of application sectors, including food, animal feed, soil and water.
 - two of the examples partially updated to illustrate some of research developments
- Four main aspects of new developments included in Second Edition:-

*M H Ramsey, S L R Ellison and P Rostron (eds.) Eurachem/EUROLAB/ CITAC/Nordtest/AMC Guide: Measurement uncertainty arising from sampling: a guide to methods and approaches. Second Edition, Eurachem (2019). ISBN (978-0-948926-35-8). Available from http://www.eurachem.org

1. Using Uncertainty Factor to express MU and UfS

- Uncertainty Factor (^FU) is an alternative way to express measurement uncertainty.
- Upper and lower confidence limits (UCL & LCL) of a measurement value expressed by:-
 - multiplying and dividing the measurement value by the uncertainty factor
 - e.g. For measurement value of 5 mg/kg,

$$FU = 2.5$$
 UCL = 5 * 2.5 = 12.5 mg/kg, LCL = 5/2.5 = 2 mg/kg

Contrasts against traditional approach of <u>adding and subtracting</u> the uncertainty.

 $-\,$ e.g. For measurement value of 5 mg/kg.

$$U = 2.5 \text{ mg/kg}$$
 UCL = $5 + 2.5 = 7.5 \text{ mg/kg}$, LCL = $5 - 2.5 = 2.5 \text{ mg/kg}$

New Aspect 1. Using Uncertainty Factor to express MU and UfS

- Uncertainty Factor (FU) is approach more accurate when:-
 - relative expanded uncertainty value is large (e.g. >20%),
 - frequency distribution of uncertainty is approximately log-normal, rather than normal.
- Both conditions often apply to measurement uncertainty that arises from sampling process,
 - particularly when spatial distribution of analyte in test material is substantially heterogeneous.
- Also for some purely analytical systems (e.g. GMO in soya, with u' = 70%)
- Guide also explains how measurement uncertainty can be calculated
 - by <u>adding</u> the component arising from sampling, expressed as an uncertainty factor (^{F}U)
 - with that arising from chemical analysis, expressed as relative uncertainty (U')
- More details of these issues in my later talk

New Aspect 2. Unbalanced design to reduce cost of estimating UfS

- First edition used 'duplicate method' with a balanced experimental design for estimation of:
 - measurement uncertainty as a whole
 - and its two components in sampling and analytical steps
 - using balanced design (analytical duplicates on both of the two sample duplicates)

- Second edition stresses the advantage of using unbalanced design,
 - analytical dreduces the extra cost uplicate on only one of the two sample duplicates.
 - of estimating the uncertainty by 33%.
 - details in later talk by Peter Rostron

New Aspect 4. UfS estimation using Sampling Proficiency Testing

- First Edition of UfS Guide this approach was discussed in theory
- Second Edition now refers to the first practical example
- Multiple samplers each apply whatever sampling protocol they consider appropriate
 - to achieve the same stated objective for the same sampling target
- Using a balanced design across all of the different samplers (next slide)
- Then possible to include 'between-sampler' bias in estimate of UfS
 - in addition to the components that were previously included
- General principles of SPTs*
- First practical SPT used to estimate UfS**
 - concerned measurement of moisture content of 20 ton batch of fresh butter

^{-*}Proficiency testing of sampling. Technical Brief 78, July 2017, Anal. Methods, 2017, 9, 4110, DOI: 10.1039/c7ay90092a
-https://pubs.rsc.org/en/content/articlehtml/2017/ay/c7ay90092a
**M H Ramsey. B Geelhoed, A P Damant, R Wood (2011) Improved evaluation of measurement uncertainty from sampling by inclusion of between-

sampler bias using sampling proficiency testing. Analyst, 136 (7), 1313 – 1321. DOI:10.1039/C0AN00705F

Experimental Design of SPTs

- Each sampler takes two samples,
 - · both analysed twice
 - In balanced design
- Allows effects of analysis to be removed from those of sampling
- Multiple targets measured
 - in different rounds of the SPT

US University of Sussex

Scoring an SPT – in general

$$z = (x - x_{pt}) / \sigma_{pt}$$

x =submitted result

e.g. participants estimated mean concentration of the sampling target

x_{pt} is assigned value

- independent of the result, either...
 - by expert/prior measurement
 - by spiking
 - by consensus

σ_{nt} is fitness for purpose (FFP) criterion

- independent of the result, either...
 - from external FFP requirement, or
 - from internal information (e.g. s within-participant)

UNIVERSITY Of Sussex

Uncertainty estimation from SPT

• Use ANOVA to separate the component variances (s²)

$$s^2_{total} = s^2_{between-sampler} + s^2_{within-sampler} + s^2_{analytical}$$

- Use s^2_{total} as estimate of the measurement uncertainty
- Extra component is between-sampler effect
 - includes sampling bias between-samplers
 - comes out as random effect in this model
 - not estimated by the 'Duplicate method' usually used
 - by single sampler on 'm' different targets ($m \ge 8$)
 - · using balanced design
- UfS from Duplicate Method for single sampler
 - estimated for butter using balanced design on single sampler
 - averaged across all samplers

Sample 1.1

Target 1

Result 1.1.1

Result 1.1.2

SPT on % Moisture in Fresh Butter

- Target: 20 tons of fresh butter in boxes 6-fold composite sample
- · Standard experimental design of SPT
- 9 samplers (A I) operating independently
- % Moisture determined gravimetrically by centralized analysis
 - Hence low analytical uncertainty (U' = 0.35%)

	_			
Sampler #	S1A1	S1A2	S2A1	S2A2
Α	15.4741	15.4155	15.4972	15.4796
В	15.3655	15.3257	15.3653	15.3373
С	15.4417	15.4069	15.4552	15.4518
D	15.4161	15.4134	15.4486	15.4143
E	15.4085	15.3675	15.4392	15.406
F	15.4148	15.3876	15.4176	15.3473
G	15.4959	15.4757	15.4853	15.5185
Н	15.3673	15.3732	15.372	15.3427
1	15.3214	15.2779	15.3424	15.3721

Z- scores for SPT on Moisture in Fresh Butter

z-scores calculated for both measurements (m.1.1 & m.1.2) - for two samples (m.1 and m.2) taken by each sampler (m)

Sampler	First z-score m.1.1	Second z-score m.1.2	Third z-score m.2.1	Fourth z-score m.2.2	Rescaled sum of z-scores = $\Sigma z/\sqrt{n}$ = $\Sigma z/\sqrt{4}$
Α	1.36	0.18	1.83	1.47	2.42
В	-0.83	-1.64	-0.84	-1.40	-2.35
С	0.71	0.00	0.98	0.91	1.30
D	0.19	0.14	0.85	0.15	0.66
E	0.04	-0.79	0.66	-0.01	-0.06
F	0.16	-0.39	0.22	-1.20	-0.60
G	1.80	1.39	1.59	2.26	3.52
Н	-0.80	-0.68	-0.70	-1.29	-1.73
1	-1.72	-2.60	-1.30	-0.70	-3.16

- Two samplers had potentially non-proficient RSz-scores* (>3)
- Samplers; I (z = -3.2) & G (z = +3.5) in opposite directions
- Video evidence suggests might be related to angle of sampling device

*AMC, Proficiency testing of analytical laboratories: organization and statistical assessment, Analyst, 1992, 117, 97–117. US of Sussex

Estimate of Uncertainty using SPT - including Between-Sampler Bias

- Example using SPT for moisture in butter

Ramsey M.H. Geelhoed B, Damant, A.P., Wood, R. (2011) Improved evaluation of measurement uncertainty from sampling by inclusion of between-sampler bias using sampling proficiency testing. Analyst, 136 (7), 1313 – 1321. DOI:10.1039/COAN00705F. ANOVA: U' as % on concentration of moisture in butter

 \approx Duplicate Method (single sampler) gives U' = 0.39 %

SPT (multiple samplers, n=9) gives U' = 0.87%

- U' larger* x 2.2 - includes bias between-samplers

Remove two samplers with potentially non-proficient z-scores (RSz > 3)

Samplers; I (z = -3.2) & G (z = +3.5)

SPT (n=7)

gives U' = 0.69%

- U' still larger x 1.8
- a more reliable estimate of Uncertainty
- Ideally apply over multiple rounds of SPT, if targets comparable

*Whether U' values are significantly different – talk by Peter Rostron in 'Methods' Session University of Sussex

Example of SPT using *in situ* measurements

NPL's Gas Measurement PT scheme

- Measurement of combustion gases
- From stack simulator facility at NPL (for sampling component)
 - and directly from cylinders (for analytical component)
- Concentrations and conditions are typical of plant
 - falling under Industrial Emissions Directive (IED)

Test	NOx (ppm)	VOC (ppm)	SO ₂ (ppm)	CO (ppm)	O ₂ (%)	H ₂ O (%)
Max Range	270	10	200	100	17	20

- Results from 16 rounds published*
- (S)PT score used in accreditation
- UfS not yet estimates
- Combination of sampling and *in situ* analytical steps (i.e. measurement)
 - Better described as Measurement Proficiency Test (MPT)?

http://www.stack-pt-schemes.net/?page=stack_gase

New #3. Application of UfS estimation to wider range of situations

- These include measurements made:
- (a) in situ (e.g. by field sensors without removing a sample)
- (b) on site (e.g. in a field laboratory on a removed sample)
 - Intermediate in complexity between ex situ and in situ
- (c) passive measurements of radioactive decay, and
- (d) at the microscopic scale (e.g. *In situ* PXRF in mm scale and SIMS at micron scale).
- Discussed in later talk

Conclusions

- UfS needs to be included in estimates of Measurement Uncertainty in most situations
- There are two main approaches to estimation UfS
 - empirical approach generally more flexible* than modelling approach
- Second edition of the Eurachem UfS Guide has several new aspects (some discussed in later talks)
- Use of Sampling Proficiency Testing data can help identify unsuspected* between-sampler bias

Acknowledgements

Composition of UfS Working Group

Eurachem members

- Mike Ramsey (Chair)
- Steve Ellison (Secretary)
- Paolo de Zorzi (ISPRA, Italy)
- Pentti Minkkinen
- Eskil Sahlin (RISE. Sweden)
- Alex Williams

EUROLAB members

- Irache Visiers (Applus)
- •Rudiger Kaus (EUROLAB, DE)

CITAC. Members

- Ilya Kuselman (Israel)
- Jorge Eduardo S Sarkis (INER, Brazil)

Nordtest representative

• Bertil Magnusson (Sweden)

RSC AMC representatives

- Roger Wood
- Peter Rostron

Additional members of RSC/AMC Subcommittee:-

- Bob Barnes
- Mike Thompson

Funding from Analytical Methods Trust (AMT)

