How to address matrix mismatch bias in the uncertainty budget

Steffen Uhlig Kirsten Simon Bertrand Colson Karina Hettwer Kirstin Frost

Matrix bias

- In chemical analysis, differences in results are said to be caused by matrix bias when
 - the extraction of analyte is affected by the sample matrix, so that a part of the analyte is not recovered;
 - or when a part of the matrix is extracted along with the analyte and interacts with the measurement's physico-chemical mechanism (e.g. peak suppression, inhibitory effects ...)
- The term *matrix bias* will be used to denote a specific source of variation between results obtained from samples collected from the same material or type.

One sample, many laboratories

- The basic design for multi-lab method validation studies according to ISO 5725-2 allows the estimation of two random effects: laboratory bias and repeatability errors
- According to this design, all tests are performed with the same test material and the same method.
- Since all laboratories work with the same method, the matrix bias occurring in all laboratories should be the same.
- In addition, due to variation of procedures and different instruments, matrix bias is not constant but varies from laboratory to laboratory.

	Sample 1
Lab 1	93%
Lab 2	81%
Lab 3	84%
Lab 4	92%
Lab 5	94%
Lab 6	95%
Lab 7	98%
Lab 8	100%
Mean of matrix bias	92%
SD of matrix bias	7%

Uhlig et al, Matrix effects, Eurachem workshop, Berlin, 2019-11-20

www.quodata.de

One sample, many laboratories

Results of a multi-lab method validation study (Official Methods, Germany, 2009) for mycotoxins in oat:

HT2	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	Average across samples	Standard
Mean [µg/kg]	9,6	26,5	8,5	21,1	15,7		507,6
Relative reproducibility sd	22,4%	21,9%	28,1%	28,8%	32,3%	26,7%	10,6%
Relative repeatability sd	16,3%	7,0%	22,9%	13,4%	20,8%	16,1%	7,0%
Relative laboratory sd	15,3%	20,7%	16,2%	25,6%	24,7%	20,5%	8,0%
Reproducibility sd / Horwitz = HORRAT	1,02	0,99	1,28	1,31	1,47	1,21	0,60
Repeatability sd / Horwitz	0,74	0,32	1,04	0,61	0,95	0,73	0,40
Laboratory sd / Horwitz	0,70	0,94	0,74	1,16	1,12	0,93	0,45

Although the concentration differences between the standard solution and matrix samples are too large to compare the corresponding precision data, a comparison of the Horwitz-corrected values suggests that significant matrix effects may be present.

Many samples, many laboratories

• If the basic design for multi-lab method validation studies according to ISO 5725-2 is performed for several samples/matrices, matrix bias for a specific laboratory is not constant but varies from sample to sample.

	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	Sample 6	Sample 7	Sample 8	Mean of lab bias across samples	SD of lab bias across samples
Lab 1	88%	103%	68%	78%	99%	107%	99%	95%	92%	15%
Lab 2	96%	93%	67%	90%	94%	104%	89%	93%	91%	12%
Lab 3	80%	97%	59%	74%	79%	86%	80%	83%	80%	12%
Lab 4	74%	88%	56%	78%	84%	87%	76%	79%	78%	12%
Lab 5	71%	89%	73%	92%	84%	92%	93%	81%	84%	10%
Lab 6	88%	97%	68%	81%	84%	98%	77%	91%	86%	11%
Lab 7	91%	104%	69%	93%	86%	102%	86%	94%	91%	12%
Lab 8	80%	82%	62%	76%	82%	97%	90%	83%	82%	12%
Mean of matrix bias across labs	84%	94%	65%	83%	87%	97%	86%	87%		
SD of matrix bias across labs	10%	8%	6%	9%	7%	9%	9%	7%		

Uhlig et al, Matrix effects, Eurachem workshop, Berlin, 2019-11-20

www.quodata.de

Many samples, one laboratory

Experimental design for the calculation of the matrix SD within one laboratory

Select **randomly** n=12 **blank** samples (matrices) and spike all of them at a constant level.

Conduct measurements of the 12 samples in duplicate (better: triplicate) under repeatability conditions in **random** order.

Calculate variance between samples by means of ANOVA (or by REML)

Many samples, one laboratory

- First, compute the overall mean value \bar{x} , and the sample-specific mean values \bar{x}_i . Then compute the between-sample sum of squares:
- $SSB = n \cdot \sum_{i=1}^{m} (\bar{x}_i \bar{x})^2$
- and the within-sample sum of squares:
- $SSW = \sum_{i=1}^{m} \sum_{j=1}^{n} (x_{ij} \bar{x}_i)^2$
- The repeatability standard deviation s_r is then obtained as
- $S_r = \sqrt{\frac{SSW}{m \cdot (n-1)}}$
- and the between-sample standard deviation s_M is obtained as
- $s_M = \sqrt{\frac{1}{n} \left(\frac{SSB}{m-1} s_r^2 \right)}.$

Uhlig et al, Matrix effects, Eurachem workshop, Berlin, 2019-11-20

www.quodata.de

Many samples, one laboratory

 Example: Data from an in-house experiment for the evaluation of matrix bias (spike level = 100 μg/kg)

	Replicate 1	Replicate 2
Matrix 1	114.51	112.24
Matrix 2	120.25	111.59
Matrix 3	88.46	86.62
Matrix 4	118.93	102.35
Matrix 5	74.06	80.91
Matrix 6	117.50	102.69
Matrix 7	120.96	109.35
Matrix 8	96.05	92.92
Matrix 9	98.43	87.09
Matrix 10	107.99	117.42
Matrix 11	117.34	126.87
Matrix 12	76.56	109.79

Many samples, one laboratory

Results of in-house experiment

s _r	S _M	Recovery across samples
9.53	12.24	103,8 %

· Here, the sd of in-house matrix bias is larger than the in-house repeatability sd

Uhlig et al, Matrix effects, Eurachem workshop, Berlin, 2019-11-20

www.quodata.de

Matrix bias versus inhomogeneity

- It is important to distinguish matrix bias from sample inhomogeneity. Test design for sample inhomogeneity looks the same, but the samples are different
 - Test design for matrix bias:
 Identical analyte concentration levels but varying matrix very
 - Test design for sample inhomogeneity:
 Identical matrix but varying analyte concentration levels

Discussion

- Matrix bias can be a major component of measurement uncertainty.
- Precision data according to ISO 5725 do include the standard deviation of the matrix bias across laboratories. They do not include the standard deviation of matrix bias across samples.
- The matrix standard deviation across samples can be obtained from an in-house study if the true concentration level of samples is known.
- Stratified sampling is often more efficient than random sampling. Procedures for stratified sampling (orthogonal design) have been implemented in the European Commission Decision CD 657/2002, see also Jülicher et al (1998) Analyst, 1998,123, 173-179.
- ISO DTS 23471 provides further experimental designs (draft to be published in 2020).

Uhlig et al, Matrix effects, Eurachem workshop, Berlin, 2019-11-20

www.quodata.de

Many thanks for your attention!

QuoData GmbH 10787 Berlin, Ansbacher Straße 11 01309 Dresden, Prellerstraße 14

E-Mail: uhlig@quodata.de