Measurement uncertainty from sampling and its roll in validation of measurement procedures

Prof. Michael H Ramsey
Chair of Eurachem UfS Working Group

School of Life Sciences,
University of Sussex, Brighton, UK
m.h.ramsey@sussex.ac.uk

Eurachem Workshop 2023 Bern-Wabern, 22nd to 23rd June 2023

Overview of Talk

- Sampling as part of the measurement process
- Uncertainty (U) of measurement values the key metric
 - why to include the contribution from sampling (UfS)
- Estimation of UfS (& MU) Mainly using Duplicate Method
 - but also using Sampling Proficiency Testing
- Validation of measurement procedures including sampling (VaMPIS)
 - by judging of fitness for purpose (FFP) of measurement values & procedures
 - example for an ex situ measurement procedure
 - gives improved reliability of compliance decisions
- Conclusions

Sampling as part of the measurement process

- Sampling really the first step in the measurement process
- *In situ* measurement techniques reveal this
 - Place the sensor → make measurement = taking a sample
 - Uncertainty from sampling produces MU in measurement
- Physical sample preparation (in field or lab)
 - e.g. filter, acidify, dry, store, sieve, grind, split
 - is also part of the measurement process
 - and potentially important source of MU
 - include in the validation and QC processes (often omitted by labs)

Sampling as part of the measurement process

Sampling Target at micron scale

Measurement Uncertainty (MU) – the key metric

- Historially: MU (U) is 'an estimate attached to a test results (x).... which characterises the range of values within which the true value is asserted to lie' [1]
 - 'True value' equivalent to 'Value of the Measurand' in more recent definitions
 - Parameter, associated with the result of a measurement, that characterises the dispersion of the values that could reasonably be attributed to the measurand. [2]
 - UCL = Upper Confidence Limit, LCL = Lower Confidence Limit.
 - Confidence Interval (CI) is between LCL and UCL
- Includes both Random effects (e.g. precision) and Systematic effects (e.g. bias)
- MU arises from <u>all</u> steps in measurement (e.g. sampling & physical sample prep.) in ISO/IEC 17025
- Key parameter of measurement (and sampling) quality
- Doesn't <u>assume</u> measurements (or sampling) are 'correct' hence 'representative'
 - traditional approach to Sampling Quality

Statistical model

for *Empirical* estimation of uncertainty - One Sampling Target

$$x = X_{true} + \varepsilon_{sampling} + \varepsilon_{analytical}$$

x = measured value of the analyte concentration in one sampling target

 X_{true} = **true** value of the analyte concentration in the sampling target

 $\mathcal{E}_{sampling} + \mathcal{E}_{analytical}$ = effects on measured concentration from sampling and analysis

Variance (standard deviation squared) of measurement value = σ_{meas}^2

$$\sigma_{meas}^2 = \sigma_{sampling}^2 + \sigma_{analytical}^2$$

 $\sigma_{sampling}^2$ is the between-sample variance on one target (largely due to analyte heterogeneity) $\sigma_{analytical}^2$ is the between-analysis variance on one sample (as Repeatability)

For *estimates* of variance, we have:

$$s_{meas}^2 = s_{sampling}^2 + s_{analytical}^2$$

Statistical model

for *Empirical* estimation of uncertainty - Multiple Sampling Targets

Multiple sampling targets (n > 8) are needed for more realistic estimate of MU & UfS – using SPT

$$x = X_{true} + \varepsilon_{target} + \varepsilon_{sampling} + \varepsilon_{analytical}$$

 ε_{target} represents the variation of concentration between the targets and has variance $\sigma_{between-target}^2$.

Variance of measurement value =
$$\sigma_{meas}^2 = \sigma_{sampling}^2 + \sigma_{analytical}^2$$

$$\sigma_{total}^2 = \sigma_{between-target}^2 + \sigma_{sampling}^2 + \sigma_{analytical}^2$$

For our estimates of variances, we have:-

$$s_{total}^2 = s_{between-target}^2 + s_{sampling}^2 + s_{analytical}^2$$

How MU is expressed & reported

- MU usually expressed using standard deviation (s), e.g.:-
- 1. Standard uncertainty (u)

$$u = s_{meas}$$
 (often = $s_{analytical}$)

2. Expanded uncertainty (*U*)

$$U = ks_{meas} = 2s_{meas}$$

with coverage factor (k) of 2 for 95% confidence

- may need k > 2 for U based upon small number of samples*
- 3. Expanded relative uncertainty (U')

$$U' = 100 \frac{2s_{meas}}{x} \%$$

for measurement value (x)

MU can also be expressed as a Confidence Interval, e.g. = $x \pm U$

MU expressed as Uncertainty Factor

4. Uncertainty Factor (FU)

$$^{F}U = \exp\left(2s_{G,meas}\right)$$

s_{G.meas} is SD of log_e-transformed measurement values ^[1]

Confidence Interval = $x \cdot / FU$

*/ called 'times over'

Four empirical methods for estimating uncertainty including that from sampling

Method #	Method description	Samplers (People)	Protocols/ Procedure	Component estimated				
		S	Sampling Precision	Sampling Bias	Anal. Precis ion	Anal. Bias		
1	Duplicates	single	single	Yes	No	Yes ³	No ¹	
2	Multiple protocols	single	multiple	between pr	rotocols	Yes ³	No ¹	
3	CTS	multiple	single	between sa	amplers	Yes	Yes ²	
4	SPT	multiple	multiple	between pr +between s		Yes	Yes ²	Example of SPT later

CTS = Collaborative Trial in Sampling (use in Validation), and SPT = Sampling Proficiency Test.

Simplest Empirical method is 'Duplicate Method' (#1) – applied in 4 Examples in UfS Guide

1 estimate analytical bias using CRM, 2 Analytical bias partially or completely included where multiple labs involved 3 Repeatability conditions

Duplicate Method of UfS Estimation – General Principles

- Duplication is most cost-effective form of replication
 - Apply to both duplicate samples and duplicate chemical analyses
 - using two-stage nested experimental design (balanced or unbalanced)
 - But can have large confidence interval of resulting estimates of MU
 - Unless it is applied to at least 8 sampling targets (ideally more, e.g. 20)
- Realistic taking of duplicate samples is crucial
 - Not just the splitting of a single sample
- Take duplicate samples independently by fresh interpretation of the sampling procedure
 - How far away (in space or time) might duplicate sample be taken? Reflects...
 - ambiguity in sampling procedure
 - spatial uncertainty in the surveying device in use
 - Example below for ex situ measurement of Nitrate in lettuce (UfS-A1, VaMPIS-B1)

Estimation of MU (including UfS) Using Duplicate Method – Full Balanced Design

- Usually uses this full balanced experimental design (unbalanced no S2A2 reduces cost)
- 8 typical Sampling Targets chosen
- Only requires one 'sampler' (or measurement scientist)
 - Can be improved using multiple 'samplers' using SPT results (see later slide, and UfS Guide)
- Explain Duplicate Method for Case Studies followed by ANOVA
 - Applicable to Validate both ex situ and in situ measurement methods flow chart

Validation of Measurement Procedures Including Sampling (VaMPIS)
- Flow Chart

Validation using MU/UfS - Nitrate Concentration in Lettuce

- EU threshold 4500 mg kg⁻¹ for nitrate concentration of Sampling Target¹
 - i.e. ~ 12,000 20,000 heads in each bay/batch/target

- to make a single **composite sample** from each Sampling Target
- Analytical procedure/method (HPLC³) already validated using Collaborative Trial⁴
 - U_{analysis} around 6% at that validation (RSD_{Reproducibility} = ~ 3%)
- Need to validate the whole measurement procedure
 - including sampling & sample preparation
- MU is key metric that affects compliance decisions
 - MU is affected by (and reflects) all of metrics for the measurement procedure
 - precision, bias, LOD, working range, selectivity, sensitivity, ruggedness
 - how much MU from the sampling (UfS)?
- Judge FFP of measurement procedure by the MU is it close to Target MU?

^{1.} Commission Regulation (EC) No 563/2002 of 2 April 2002 amending Regulation (EC) No 466/2001

^{2.} European Directive 79/700/EEC. OJ L 207, 15.8.1979, p26.

^{3.} BS EN 12014-2:1997, Foodstuffs. Determination of nitrate and/or nitrite content. General considerations

^{4.} Farrington et al., (2006), Journal of the Association of Public Analysts (Online), 34, 1-11

UfS estimation for Lettuce using Duplicated 'W' Sampling Design

Sample 1 Sample 2

Estimating UfS (and MU) for Nitrate in Lettuce

Sampling target

Sample 1	Sample 2
Sample 1	Sample 2

	Analysis 1	Analysis 2	Analysis 1 A	nalysis 2
Sample target	S1A1 Nitr	S1A2 ate concentr	S2A1 ration (mg kg-1	S2A2
A	3898	4139	4466	4693
В	3910	3993	4201	4126
C	5708	5903	4061	3782
D	5028	4754	5450	5416
E	4640	4401	4248	4191
F	5182	5023	4662	4839
G	3028	3224	3023	2901
Н	3966	4283	4131	3788

Analytical duplicates generally show ~10% precision

Sampling duplicates generally differ by <20%

Target C has greater difference (~50%) – outlying values?

US University of Sussex

RANOVA3 output for Nitrate in Lettuce (Example A1)

Classical ANOVA

Olassical Alto V	•			
Mean	4345.6	4345.6 No. Ta		8
Total Sdev	774.53			
	Btn Target	<u>Sampling</u>	<u>Analysis</u>	<u>Measure</u>
Standard deviation	556.28	518.16	148.18	538.93
% of total variance	51.58	44.76	3.66	48.42
Expanded relative uncert	ainty (95%)	23.85	6.82	24.80
Uncertai	nty Factor (95%)	1.2432	1.0738	1.2574

- Software RANOVA3* (in Excel) performs:-
- Classical ANOVA gives poor estimate of U' = 24.8 %
 - Due to presence of outlying values
- also gives estimate of ^FU as 1.26 (~ 26% similar)
 - after log_e-transformation within RANOVA3
 - but distribution NOT log-normal in this case
 - Analytical recovery not statistically different from 100%
 - Therefore no analytical bias detected

Robust ANOVA

N.4	4400.0			
Mean	4408.3			
Total Sdev	670.58			
	Btn Target	<u>Sampling</u>	<u>Analysis</u>	<u>Measure</u>
Standard deviation	565.4	319.05	167.94	360.55
% of total variance	71.09	22.64	6.27	28.91
Expanded relative (95%)	e uncertainty	14.47	7.62	16.36

Robust U' as 16.4%. ($u = 360 \text{ mg/kg}^{-1}$)

Most reliable estimate of MU/-

As approximately Normal distribution-

- but with < 10% outliers

U' anal = 7.6% – as repeatabilityVery similar to MU = 6 % reported at separate validation of analytical procedure

Validation of Measurement Procedure - Judge FFP against Target MU

- Validation by judging Fitness for Purpose (FFP)
- Target MU can be Option (1) set externally (e.g. arbitrary 20%, 16% < 20% so FFP), or Option (2)...
- At Optimal MU* that minimises the overall cost (including the consequences of incorrect decisions)

- By knowing UfS, can judge how Target MU (however set) can be achieved most cost-effectively by:
 - Spending more (or less) on **chemical analysis** (e.g. more precise technique), or
 - Spending more (or less) on sampling (e.g. taking more increments)

Judge FFP - level of Uncertainty

- For lettuce example estimate MU (s_{meas}) using Duplicate Method
- Calculate Target MU using optimised uncertainty (OU) method*
- Measurement Procedure is judged as NOT FFP

Uncertainty→

Actual MU (360 mg kg⁻¹) i.e. U' = 16.4% - and consequent cost (£800 per target) is much higher than...

Optimal MU value (184 mg kg⁻¹) i.e. U' = 8.3%At minimum cost (£400)

To achieve FFP - we need to reduce the MU by factor of 2

UfS accounts for 78% of MU (from ANOVA)

- So reducing UfS is most cost-effective

Sampling Theory predicts we can reduce UfS x^2 by increasing sample mass by factor of 4 (= 2^2)

So take composite sample with 40 heads instead of 10 heads – to make FFP

^{*} In upcoming SG-VaMPIS – not in UfS Guide

Reducing the Uncertainty – to achieve FFP

- Increasing number of increments from 10 to 40 heads
- Reduced s_{samp} from 319 to 177 mg kg⁻¹ by a factor of x 1.8 (similar to model prediction of x2)
- Reduced MU (s_{meas}) from 360 to 244 mg kg⁻¹. (U' from 16.4 % to 11.1%)
- Close to the optimal value (184 mg kg⁻¹) at similar Cost (~£500, down from £800 per target)
- Achieves Fitness-for-Purpose (FFP) = MU that minimises to overall financial loss

Uncertainty→

Compliance decision - More reliable using UfS

Nitrate in Lettuce (Target A)

- Over Threshold, therefore measurement indicates <u>Target A</u> is **Non-Compliant**
- Non-Compliance of Target A (False positive) appears impossible with MU based only upon $U_{analytical}$
- Only by including UfS within MU can non-compliant batch (Target A) be rejected reliably
- Reduced U with 40 heads (488 mg kg⁻¹) gives UCL 4386 which is < Theshold of 4500 mg kg⁻¹
 - Target A might have been shown to be Compliant (if that FFP measurement procedure had been used)

Estimate of Uncertainty using SPT - including Between-Sampler Bias

- Example using Sampling PT for moisture in butter*

^{*} Ramsey M.H. Geelhoed B, Damant, A.P., Wood, R. (2011) Improved evaluation of measurement uncertainty from sampling by inclusion of between-sampler bias using sampling proficiency testing. Analyst, 136 (7), 1313 – 1321. DOI:10.1039/COAN00705F.

ANOVA: U' as % on concentration of moisture in butter (200 tons)

 \approx Duplicate Method (single sampler) gives U' = 0.39 %

SPT (multiple samplers, n=9) gives U' = 0.87%

- U' larger* x 2.2 - includes bias between-samplers

Remove two samplers with potentially non-proficient z-scores (RSz \geq 3)

SPT (n=7) gives
$$U' = 0.69\%$$

- U' still larger x 1.8
- a more reliable estimate of Uncertainty
- Ideally apply over multiple rounds of SPT, if targets comparable
- e.g. 16 rounds, stack-gas measurement SPT [Coleman et al ,2013, <u>Accred Qual Assur</u> 18:517–524]
- Multiple samplers using one procedure (CTS) better for VaMPIS
- More expensive than Duplicate Method, but sometimes justified

Conclusions

- Eurachem UfS Guide explains importance of UfS (& MU), and how to estimate it
- Including sampling within the measurement process:
 - Is essential for making reliable estimates of MU (including UfS)
 - e.g. for Compliance Decisions: e.g. are concentration levels above from regulatory limits?
 - Conforms to ISO/IEC 17025:2017
 - Being able to judge FFP, and hence validate the whole measurement process
 - Hence rigorous Validation of the whole Measurement Process (Including Sampling)
 - Upcoming Supplementary Guidance on VaMPIS
- UfS (and hence MU) can be estimated with Duplicate Method (most practical)
 - Applicable to any sampling medium: soil, sediment, herbage, waters, gases etc.
 - Also applicable to *in situ* measurements (such as PXRF Example B2 in SG-VaMPIS)
 - Sampling PT (or CT) results can be used to also include between-sampler bias within MU
- Questions?

Compliance decision - More reliable using UfS Nitrate in Lettuce (ALL 8 Targets)

Ignores MU – 4 Batches rejected

Sample Target	Nitrate Conc (x) in S1A1 mg/kg	Deterministic Classification $x < 4500$		
A	3898	Υ		
В	3910	Υ		
C	5708	N		
D	5028	N		
E	4640	N		
F	5182	N		
G	3028	Υ		
Н	3966	Υ		
Batches Accepted		4		

Compliance decision - More reliable using UfS Nitrate in Lettuce (ALL 8 Targets)

Ignores MU – 4 Batches rejected

Allows for MU, (using 10-fold composites) – 7 Batches rejected

Sample Target	Nitrate Conc (x) in S1A1 mg/kg	Deterministic Classification $x < 4500$	10-head U'10 = 16.4%	x + U ₁₀	Probabilistic Classification $x+U_{10} < 4500$
A	3898	Υ	639.3	4537	N
В	3910	Υ	641.2	4551	N
C	5708	N	936.1	6644	N
D	5028	N	824.6	5853	N
E	4640	N	761	5401	N
F	5182	N	849.8	6032	N
G	3028	Υ	496.6	3525	Υ
Н	3966	Υ	650.4	4616	N
Batches Accepted		4			1

Classification of 8 batches of lettuce based upon <u>probabilistic</u> decision using MU <u>for 10-head composite</u> U'_{10} =16.4% - caused further three batches (A, B & H) to be rejected as potential false positives

Compliance decision - More reliable using UfS Nitrate in Lettuce (ALL 8 Targets)

Allows for MU, (using 40-fold composites) – 4 Batches rejected

Sample Target	Nitrate Conc (x) in S1A1 mg/kg	Deterministic Classification $x < 4500$	10-head U'10 = 16.4%	x + U ₁₀	Probabilistic Classification $x+U_{10} < 4500$	40-head <i>U'</i> ₄₀ = 11.1%	x +U ₄₀	Probabilistic Classification $x + U_{40} < 4500$
A	3898	Υ	639.3	4537	N	432.7	4331	Υ
В	3910	Υ	641.2	4551	N	434.0	4344	Υ
C	5708	N	936.1	6644	N	633.6	6342	N
D	5028	N	824.6	5853	N	558.1	5586	N
E	4640	N	761	5401	N	515.0	5155	N
F	5182	N	849.8	6032	N	575.2	5757	N
G	3028	Υ	496.6	3525	Υ	336.1	3364	Υ
Н	3966	Υ	650.4	4616	N	440.2	4406	Υ
Batches Accepted		4			1			4

Classification of 8 batches of lettuce based upon <u>probabilistic</u> decision using <u>MU for 40-head</u> (U'_{40}) composite samples Validated (FFP) procedure gave lower MU of 11.1%

- three marginal batches (A, B & H) now accepted

