Page	Place	Published text	Replacement	Comment
46	Left column, close to bottom regarding $u(m_{\text{KMP}})$	$\sqrt{2 \times (0.09^2)} = 0.13 \text{ mg}$	$\sqrt{2 \times (0.087^2)} = 0.12 \mathrm{mg}$	0.13 mg is the correct rounded form for the formula $\sqrt{2 \times (0.09^2)}$ (=0.127) However, the value of 0.09 is derived from $0.15/\sqrt{3} = 0.087$ and if this value were used without rounding, the standard uncertainty of
				the mass of KHP would be rounded to 0.12 mg.
55	Right column – equation at the bottom	$u(V_{\rm HC1}) = \sqrt{0.0037^2 + 0.008^2 + 0.007^2}$ $\Rightarrow u(V_{\rm HC1}) = 0.011 \mathrm{mL}$	$u(V_{\rm HCl}) = \sqrt{0.008^2 + 0.007^2}$ $\Rightarrow u(V_{\rm HCl}) = 0.011 \mathrm{mL}$	Additional term incorrectly inserted in 2012 edition during formula editing. The rounded result of the calculation is unaffected.
66	right column, last line first paragraph	0.373/1.1111	0.377/1.1111	Typographical error

Comments and Errata -	Quantifying	Uncertainty in	1 Analytical	Measurement, 3r	d Edition ((2012)
-----------------------	-------------	----------------	--------------	-----------------	-------------	--------

72-80	Example A5	A number of issues affect Example A5, as follows:			
72	Table A5-1 Column standard	0.19	0.15	Standard uncertainty should be 0.15 for area	
	uncertainty			not 0.19. (See amended Table A5.1 on page 3	
72	Table A5-1 Column relative	0.033	0.026		
	standard uncertainty			This change carries through to subsequent	
72	Table A5-1 Column relative	0.092	0.095	tables, resulting in a combined standard	
	standard uncertainty			$0.001465 \text{ mg dm}^{-2}$	
77-78	Equations for linear	Page 78, formula key:	<i>i</i> is unused in the published	The calculations are correctly implemented.	
	calibration, esp. S_{XX}	<i>i</i> index for the number of	formulae and calculations	However, the explanation of the calculations	
	-	calibration standards		needs to be improved.	
				The calculations were carried out on the mean	
				results at each concentration of the calibration	
				standard, so that $j=15$, rather than over individual observations, and this accounts for	
				the value of 1.5 for S Use of the 15	
				individual results would lead to a different	
				summed value for S_{xx} , and different values for	
				<i>n</i> in the preceding calculations.	
				This would be clearer if A and a in the	
				calculation of S were replaced by mean values	
				\overline{A}_i and \overline{c}_i for each concentration.	
78	Left column, line 2 and line 3	units of mg L ⁻¹	unit of absorbance	Units of <i>S</i> and <i>S</i> xx are absorbance, not concentration.	
78	Section Area a _V	(2.77/2)	(2.70/2)		
78	Section Area a _v	$u(a_V) = \dots = 0.19$	$u(a_V) = \dots = 0.15$		
79	Table A5.3. column stand u	0.19 dm^3	0.15 dm^3		
80	Table A5.4. column E	10.01	5.73		
		0.27	0.15		
		5.92	5.88		
		-0.000483	-0.000384		
		2.34E-07	1.48E-07		

Comments and Errata - Quantifying Uncertainty in Analytical Measurement, 3rd Edition (2012)

	Description	Value <i>x</i>	Standard	Relative standard
			uncertainty $u(x)$	uncertainty $u(x)/x$
c_0	Content of cadmium in the extraction	0.26 mg L ⁻¹	0.018 mg L ⁻¹	0.069
	solution			
d	Dilution factor (if used)	1.0 ^{Note 1}	0 Note 1	0 ^{Note 1}
$V_{\rm L}$	Volume of the leachate	0.332 L	0.0018 L	0.0054
$a_{\rm V}$	Surface area of the liquid	5.73 dm^2	$0.19 - 15 dm^2$	0. 033 026
$f_{ m acid}$	Influence of the acid concentration	1.0	0.0008	0.0008
f_{time}	Influence of the duration	1.0	0.001	0.001
f_{temp}	Influence of temperature	1.0	0.06	0.06
r	Mass of cadmium leached per unit	0.015 mg dm ⁻²	0.0014 mg dm ⁻²	0.09 <u>5</u> 2
	area			

Table A5.1: Uncertainties in extractable cadmium determination

Note 1: No dilution was applied in the present example; d is accordingly exactly 1.0