

The new draft Eurachem/CITAC Guide: a summary of structure and changes

S L R Ellison LGC Limited, Teddington, UK

Uncertainty evolution Setting standards in analytical science Random/systematic error; Error propagation in chemistry (Eckschlager 1961); Pre-Collaborative study 1978 1980 • BIPM INC-1 (1980) - Type A / Type B **AOAC Stats manual** 1982 - Combine as variances (Development/validation) 1986 • ISO 5725:1986 (Collab trial) 1993 ISO Guide • ISO 5725:1994 (Adds EURACHEM Guide 1st ed 1995 trueness) EURACHEM Guide 2nd 2000 ed (QUAM:2000 ISO 21748 – Uncertainty **GUM Supplement 1** from collab study data (MCS) Draft 3rd Edition EURACHEM/CITAC guide

Principles of the Revision

- Remember translators
 - Do not revise 'cosmetically' keep existing text wherever possible
- · Refer to existing guidance where possible
 - Do not re-state other guides
- Add new sections rather than intersperse modifications
- Adopt any known corrections

A note on Terminology

- VIM 3 is published
 - Why not update to VIM 3 terminology throughout?
- QUAM:2011 Implements the GUM
 - needs to use GUM terms
- It is for Chemists
- VIM 3 definitions are often quite different in wording and need explanation
- There's a detailed Eurachem guide to VIM 3
- Decision:
 - Use GUM terminology with discussion of VIM terms where different

QUAM:2011 - Contents

- Foreword to the third edition
- 1. Scope and field of application
- 2. Uncertainty
- 3. Analytical measurement and uncertainty
- 4. The process of measurement uncertainty estimation
- 5. 8. Detailed guidance on steps in measurement uncertainty estimation
- 9. Reporting uncertainty

Appendices

- A. Examples
- B. Definitions
- C. Uncertainties in analytical processes
- D. Analysing uncertainty sources
- E. Useful statistical procedures
- F. Measurement uncertainty at the limit of detection/limit of determination
- G. Common sources and values of uncertainty
- H. Bibliography

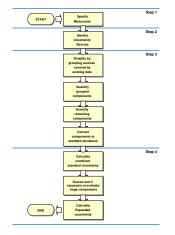
Scope

- Evaluation of ... uncertainty ... for a single method implemented as a defined measurement procedure in a single laboratory.
- [Use of] Information from method development and validation.
- [Use of] Results from defined internal quality control procedures in a single laboratory.
- [Use of] Results from collaborative studies
- [Use of] Results from proficiency test schemes used to assess the analytical competency of laboratories.

Ch 2: Uncertainty

- Definition and discussion of the concept of measurement uncertainty
- Comparison of 'error' and 'uncertainty'
- The VIM 3 definition of uncertainty

Ch. 3. Analytical Measurement and Uncertainty



- Relationship of uncertainty and validation
- Conduct of experimental studies
- Traceability
- Traceability section reduced and referring to Eurachem/CITAC Traceability guide

Ch. 4. The Process of Measurement Uncertainty Estimation

- Outline of the process
 - Specify measurand
 - Identify Sources
 - Group and quantify
 - Combine
- Unchanged in 2011

Ch 5: Specification of the Measurand

- Improved statement of 'specification'
 - a statement of
 - a. the particular kind of quantity to be measured, usually the concentration or mass fraction of an analyte.
 - b. the item or material to be analysed and, if necessary, additional information on the location within the test item.
 - c. where necessary, the basis for calculation of the quantity reporting results.
- Taken from the Eurachem Guide to the VIM

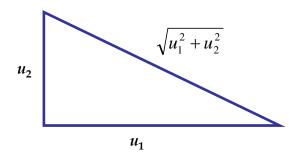
Ch 6: Identifying Uncertainty Sources

- A list of likely sources of uncertainty
- Unchanged in 2011

Ch 7: Quantifying Uncertainty

- Introduction and procedure
- Evaluating uncertainty by quantification of individual components
- Closely matched certified reference materials
- Uncertainty estimation using prior collaborative method development and validation study data
- Uncertainty estimation using in-house development and validation studies
- Data from proficiency testing
- Empirical and ad-hoc methods

7.11ff: Quantification of individual components



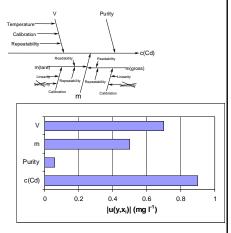
- Experimental estimation of individual uncertainty contributions
- Estimation based on other results or data
- Modelling from theoretical principles
- Estimation based on judgement
- Significance of bias
 - updated to reflect recent research

CH 8: Combining uncertainties

The basic GUM theory

Adds cross-reference to simulation methods

Ch 9: Reporting uncertainties



- Expanded uncertainty
- Interpretation against limits
 - Now references Eurachem Guide on "Use of uncertainty information in compliance assessment"

Appendix A: Examples

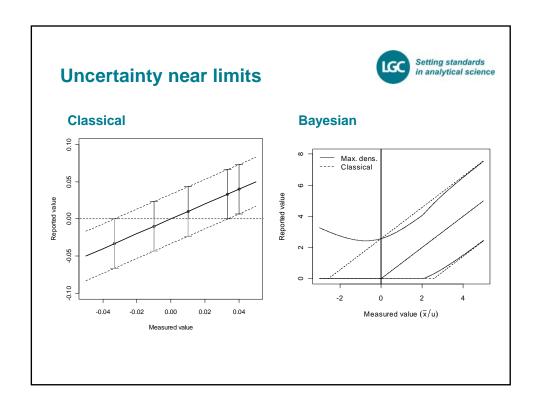
Setting standards in analytical science

- Detailed worked Examples
- Summary provided for each
- All illustrate spreadsheet methods
- Some examples amended in revision

Appendices B-D

- A. Definitions
 - Reduced to simplify and refer to other guides
- B. Uncertainties in analytical processes
 - List of uncertainties
- C. Analysing uncertainty sources
 - Cause-and-effect analysis
 - Minor change to clarify

Appendix E: Useful Statistical Procedures


- Distribution functions
- Spreadsheet method for uncertainty calculation
- Evaluation of uncertainty using Monte Carlo simulation

 New section
- Uncertainties from linear least squares calibration
- Documenting uncertainty dependent on analyte level

Appendix F. Measurement uncertainty at the limit of detection/limit of determination

- Introduction
 - Observations and estimates
 - Validity of observations below zero
 - Reporting 'less than'/'greater than'
- Measurement uncertainty near zero
 - Expanded uncertainty intervals near zero: Classical approach
 - Expanded uncertainty intervals near zero: Bayesian approach Substantial revision

Summary

- A broad guide to measurement uncertainty estimation in analytical chemistry
- Covers basic GUM but also covers validation approaches thoroughly
- · New sections on
 - Assessing compliance with limits
 - Uncertainty near detection limits
 - Monte Carlo methods

Appendices G, H

- G: Common sources and values of uncertainty
 - Reference list to assist initial estimation
- H: Bibliography
 - Updated and with additional references