

	BAM				
Monte Carlo simulation					
The idea: Enrico Fermi (1930s) and Stanisław Ulam (1946) Ulam later contacted John von Neumann to work on it.					
The problem: In the 1940s, physicists at Los Alamos Scientific Laboratory were investigating radiation shielding and the distance that neutrons would likely travel through various materials. Despite having data such as the average distance a neutron would travel in substance before it collided with an atomic nucleus or how much energy the neutron was likely to give off following a collision, the problem could not be solved with analytical calculations.	a				
The name: von Neumann and Ulam suggested modeling the experiment on a computer. Being secret, this required a code. Von Neumann chose the name "Monte Carlo". The nam is a reference to the Casino in Monaco where Ulam's uncle would borrow money to gamble.	a me				
M 1 Desistance of Antikies Chemistry Defenses Netwise EURAPHEM Workshop DAMBadia 21 - 22 May 2012	11				

			× BAM			
MC principles						
A	Random shots	nc ge	o single Monte Carlo method			
		0	Define a domain of possible inputs.			
в • • •	Algorithms	0	Generate inputs randomly from the domain using a certain specified probability distribution.			
		0	Perform a deterministic computation using the inputs.			
	Outcome	0	Aggregate the results of the individual computations into the final result.			
BAM 1 Department of Analytical Chemist	try; Reference Materials		EURACHEM Workshop, BAM/Berlin, 21 – 22 May, 2012 12			

$\begin{array}{c} & \text{MCM} \\ \text{PROPAGATION:} \\ \text{DRAWS FROM} \\ \text{THE JOINT PDF } \\ \text{FOR THE INPUT} \\ \text{QUANTITIES} \\ \text{DRAWS} \end{array} \qquad \begin{array}{c} & \textbf{M} \text{ model values} \\ \text{Subclause} \hline \textbf{7.3} \\ \text{M} \text{ model values} \\ \text{y}_r = f(x_r), r = 1, \dots, M \\ \text{Subclause} \hline \hline \textbf{7.4} \\ \end{array} \qquad \begin{array}{c} & \textbf{M} \text{ model values} \\ \text{y}_r = f(x_r), r = 1, \dots, M \\ \text{Subclause} \hline \hline \textbf{7.4} \\ \end{array} \qquad \begin{array}{c} & \textbf{M} \text{ model values} \\ \text{y}_r = f(x_r), r = 1, \dots, M \\ \text{Subclause} \hline \hline \textbf{7.4} \\ \end{array} \qquad \begin{array}{c} & \textbf{M} \text{ model values} \\ \text{y}_r = f(x_r), r = 1, \dots, M \\ \text{Subclause} \hline \hline \textbf{7.4} \\ \end{array} \qquad \begin{array}{c} & \textbf{M} \text{ model values} \\ \text{Subclause} \hline \hline \textbf{7.4} \\ \end{array} \qquad \begin{array}{c} & \textbf{M} \text{ model values} \\ \text{Subclause} \hline \hline \textbf{7.4} \\ \end{array} \qquad \begin{array}{c} & \textbf{M} \text{ model values} \\ \text{Subclause} \hline \hline \textbf{7.4} \\ \end{array} \qquad \begin{array}{c} & \textbf{M} \text{ model values} \\ \text{Subclause} \hline \hline \textbf{7.4} \\ \end{array} \qquad \begin{array}{c} & \textbf{M} \text{ model values} \\ \text{Subclause} \hline \hline \textbf{7.4} \\ \end{array} \qquad \begin{array}{c} & \textbf{M} \text{ model values} \\ \text{Subclause} \hline \hline \textbf{7.4} \\ \end{array} \qquad \begin{array}{c} & \textbf{M} \text{ model values} \\ \text{Subclause} \hline \hline \textbf{7.4} \\ \end{array} \qquad \begin{array}{c} & \textbf{M} \text{ model values} \\ \text{Subclause} \hline \hline \textbf{7.4} \\ \end{array} \qquad \begin{array}{c} & \textbf{M} \text{ model values} \\ \text{Subclause} \hline \hline \textbf{7.4} \\ \end{array} \qquad \begin{array}{c} & \textbf{M} \text{ model values} \\ \text{Subclause} \hline \hline \textbf{7.4} \\ \end{array} \qquad \begin{array}{c} & \textbf{M} \text{ model values} \\ \text{Subclause} \hline \hline \textbf{7.4} \\ \end{array} \qquad \begin{array}{c} & \textbf{M} \text{ model values} \\ \text{Subclause} \hline \hline \textbf{7.4} \\ \end{array} \qquad \begin{array}{c} & \textbf{M} \text{ model values} \\ \text{Subclause} \hline \hline \textbf{7.4} \\ \end{array} \qquad \begin{array}{c} & \textbf{M} \text{ model values} \\ \text{Subclause} \hline \hline \textbf{7.4} \\ \end{array} \qquad \begin{array}{c} & \textbf{M} \text{ model values} \\ \text{Subclause} \hline \hline \textbf{7.4} \\ \end{array} \qquad \begin{array}{c} & \textbf{M} \text{ model values} \\ \text{Subclause} \hline \hline \textbf{7.4} \\ \end{array} \qquad \begin{array}{c} & \textbf{M} \text{ model values} \\ \text{Subclause} \hline \hline \textbf{7.4} \\ \end{array} \qquad \begin{array}{c} & \textbf{M} \text{ model values} \\ \text{M} \text{ model values} \\ \text{M} \text{ model values} \\ \end{array} \qquad \begin{array}{c} & \textbf{M} \text{ model values} \\ \text{Subclause} \hline \hline \textbf{7.4} \\ \end{array} \qquad \begin{array}{c} & \textbf{M} \text{ model values} \\ \text{M} \text{ mumbers of multivariate Gaussian distribution} \\ \text{Subclause} \hline \textbf{M} \text{ model values} \\ \end{array} \qquad \begin{array}{c} & \textbf{M} \text{ model values} \\ \text{M} \text{ multivariate Gaussian distribution} \\ \text{M} \text{ model values} \hline \textbf{M} \text{ multivariate Gaussian distribution} \\ \end{array} \qquad \begin{array}{c} & \textbf{M} \text{ model values} \\ \text{M} model va$	Joint PDF $g_X(\xi)$ for input quantities X Clause \overline{g} Coverage probability p Clause \overline{g} Iel : f(X) clause $\overline{q}, \overline{a}$ Number M of Monte Carlo trials Subclause $\overline{7, \overline{a}}$	EAN Application to MU estimation (2)
The multivariate Gaussian distributionThe multivariate Gaussian distributionOUTPUT: DISTRIBUTION FOR THE OUTPUTDiscrete representation of distribution function for output quantity Y ComputationOUTPUT: PUNCTION FOR THE OUTPUTDiscrete representation function for output quantity Y ComputationOUTPUT: QUANTITYDiscrete representation function for output quantity Y ComputationOUTPUT: QUANTITYDiscrete representation function for output guantity Y Discrete representation 	$ \begin{array}{c} & \\ \text{ION:} \\ \text{OM} \\ \text{PDF} \\ \text{PDF} \\ \text{ES} \\ \text{EV} \\ \text{EV} \\ \text{EV} \\ \text{Wroth states} \\ y_r = f(x_r), \ r = 1, \dots, M \\ Subclause \boxed{7.4} \\ \end{array} $	Input parameter n Dimension of the multivariate Gaussian distribution μ $n \times 1$ vector of expectations V Covariance matrix of order n q Number of multivariate Gaussian pseudo-random numbers to be generated Output parameter X $n \times q$ matrix, the <i>j</i> th column of which is a draw from
Estimate y of Y and associated standard uncertainty $u(y)$ Subclause $\overline{7.6}$ Coverage interval $[y_{low}, y_{high}]$ for Y Subclause $\overline{7.7}$ Subclause $\overline{7.6}$ Coverage interval $[y_{low}, y_{high}]$ for Y Subclause $\overline{7.7}$ Coverage interval $[y_{low}, y_{high}]$ for Y Subclause $\overline{7.7}$	$\begin{array}{c} \text{MCM} \\ \hline \text{Discrete representation} \\ G \text{ of distribution} \\ FOR \\ \text{function for output} \\ \text{quantity } Y \\ \hline y \\ \text{Subclause} \hline [7,3] \\ \hline \\ \text{ING} \\ \text{ate } y \text{ of } Y \text{ and} \\ \text{ated standard} \\ \text{tainty } u(y) \\ \text{Subclause} \hline [7,6] \\ \hline \\ \text{Subclause} \hline [7,7] \\ \hline \\ \text{Subclause} \hline \\ \hline \\ \ \\ \text{Subclause} \hline \\ \hline \\ \ \\ \text{Subclause} \hline \\ \hline \\ \ \\ \ \\ \ \\ \ \\ \ \\ \ \\ \ \\ \ \\$	the multivariate Gaussian distributionComputationa) Form the Cholesky factor R of V , i.e. the upper triangular matrix satisfying $V = R^T R$. (To gen- erate q pseudo-random numbers, it is necessary to perform this matrix factorization only once.) b) Generate an $n \times q$ array Z of standard Gaussian variates c) Form $X = \mu 1^T + R^T Z$, where 1 denotes a column vector of q ones

		K BAM					
Benefits and limitations							
	GUM approach	MC simulation					
function f(x)	linearisation (Taylor series development)	any, also non-linear, as is					
input uncertainties	<pre>small, best if < 0.03</pre>	any, even very large					
output uncertainty	always symmetric	may be (strongly) asymmetric and kurtic					
handling of output	guidelines exist	undefined					
coverage interval	standard (expanded by t or k)	may be (quite) different from standard					
efforts	moderate (after 15 years of teaching, even routine labs should understand the concept)	high to very high (programming required, solutions are tailored)					
BAM 1 Department of Analytical Chemistry; Reference Materials EURACHEM Workshop, BAM/Berlin, 21 – 22 May, 2012 17							

