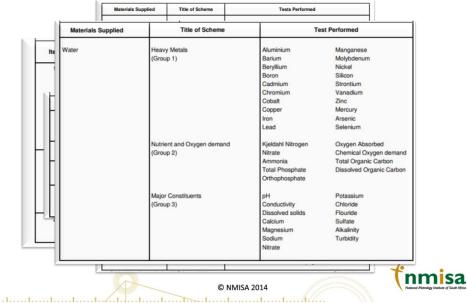


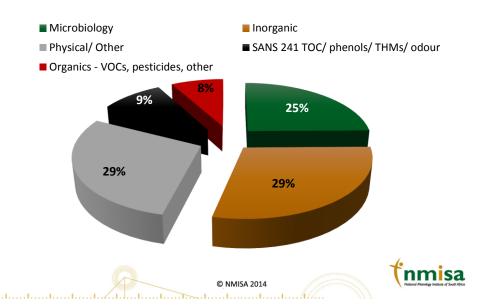
NMISA

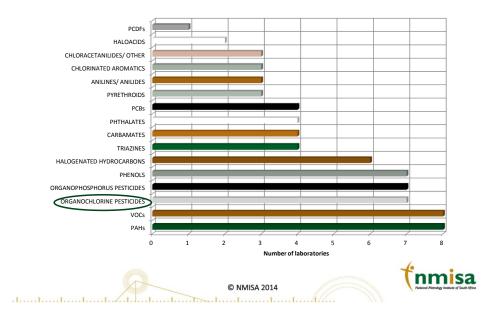
Our mandate:

- To maintain the SI units
- To ensure global measurement equivalence.
- Reference measurements, CRMs

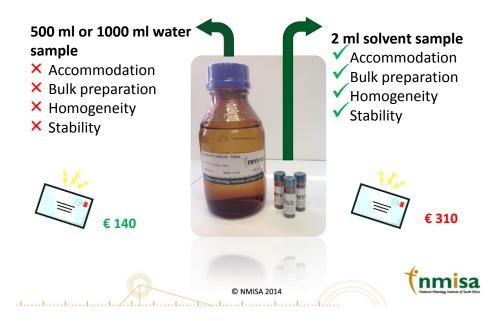
Proficiency testing schemes


- Currently 4 accredited PT providers in South Africa
 - 3 Medical/Clinical diagnostics
 - 1 Water Chemistry



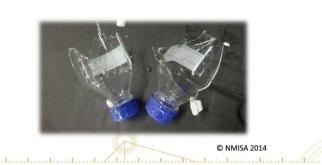

Typical accreditation schedules for PT providers

Water quality testing – ISO 17025 SANAS accredited facilities



Water testing survey – organics

Analyte		ation range g/€)	NMISA-PT-ORG10 TRIAL: May 2012	NMISA-PT-ORG12 R1: Feb 2013	NMISA-PT-ORG12 R2: Aug 2013	NMISA-PT-ORG15 R1: Feb 2014
Aldrin	10	50	43.8		42.2	
cis-chlordane	10	50		35.3		
trans-chlordane	10	50				39.0
p,p'-DDT	20	120	66.5		107.7	
o,p-DDT	20	120			104.9	
p,p'-DDE	20	120	69.5			97.5
p,p'-DDD	20	120		60.3		
Dieldrin	10	50				39.7
Endosulfan I	100	300		242.7		
Endosulfan II	100	300			135	
Endosulfan sulphate	100	300				242.2
Endrin	20	120		108.3		
Heptachlor	10	50		35.8		
Heptachlor epoxide	10	50				
Alpha HCH	20	120			87.0	
Beta HCH	20	120				
Delta HCH	20	120				98.8
Gamma HCH (Lindane)	20	120	132.1			


Sample description

Sample description

2 x **1000** mL diluted water sample previously spiked with OCPs

Results due within 3 weeks

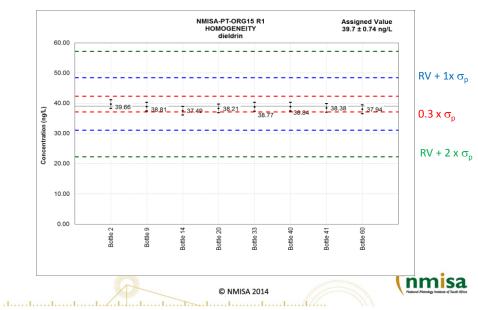
Sample preparation - assigned value

5.2 Formulation

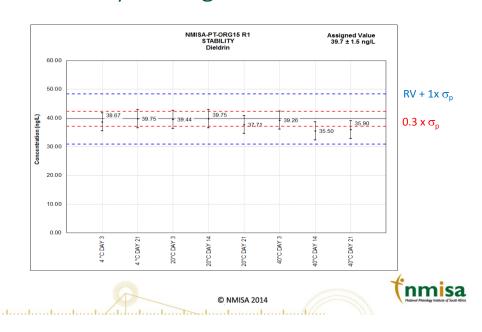
Purity and density-corrected gravimetric preparation value of the solutions;

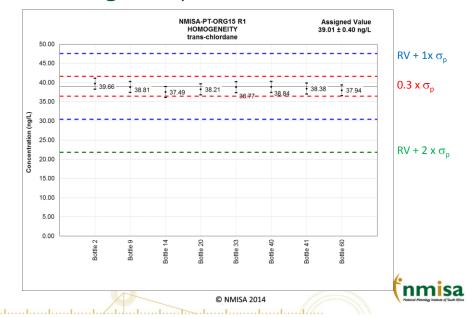
The uncertainty associated with the PTS assigned values was determined using the following uncertainty contributors described in equation 1:

$$u_{AV} = \sqrt[2]{u_{purity}^2 + u_{mass}^2 + u_{bottling}^2 + u_{homog}^2} \quad [1]$$


Homogeneity and stability assessment

- Extraction
 - 1 L extracted
 - Horizon SPE DEX C18 Disks
- Pre-concentration
 - Water removed (DryDisk)
 - Solvent dried down (N₂, 35°C)
 - Reconstituted in 100 μL
- Analysis
 - GC-TOFMS
- Quantification
 - Double isotope dilution mass spectrometry

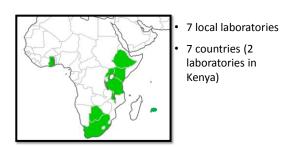



Homogeneity

Stability testing

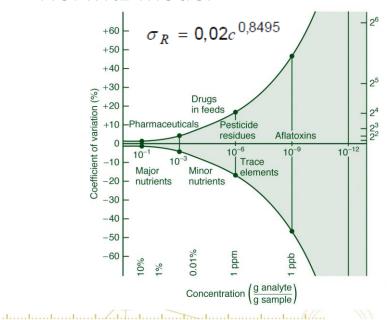
Homogeneity

Stability testing


Reporting results

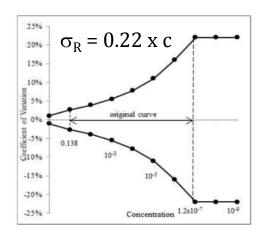
- Measurement results (ng/L) incl. uncertainty of measurement
- Technical information
 - Extraction
 - · Instrumental Analysis
 - Quantification
 - Recoveries
 - Purity
 - Traceability of calibration standards
 - Measurement equation
 - Uncertainty budget
- Other observations

Standard deviation of proficiency assessment


- 6.2 Prescribed value
- 6.3 By perception
- 6.4 From a general model

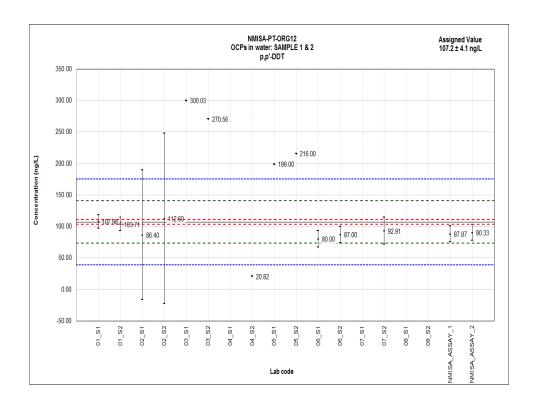
HORWITZ

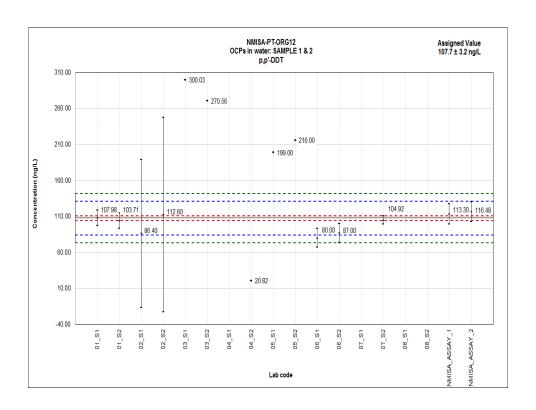
- 6.5 From the results of a precision experiment
- 6.6 From data obtained in a round of a proficiency testing scheme



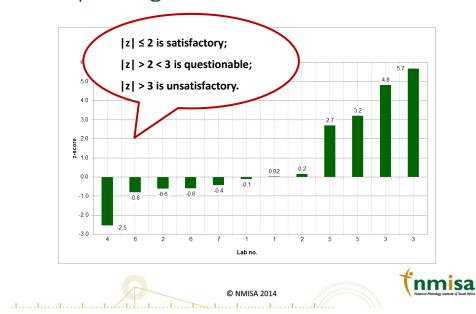
Horwitz model

nmisa National Methology Institute of South Africa


Adjusted Horwitz model



Images sourced from: "Horwitz equation as quality benchmark in ISO/IEC 17025 testing laboratory" (14)


NMISA 2014

Reporting - Performance statistics

Reporting – E_n number $|E_n| \le 1$ is satisfactory; $|E_n| > 1$ is unsatisfactory. SAMPLE 1&2 Lab Expanded Concentration Coverage Code Analyte Uncertainty (ng/L) Factor (k) (ng/L) 107.98 1.96 p,p'-DDT 10.74 0.1 1 p,p'-DDT -0.3 103.71 1.96 10.74 p,p' DDT -0.2 86.4 2 103 2 p,p' DDT 112.6 2 135 0.04 p,p'-DDT 87 2 -1.5 13 6 p,p'-DDT 2 80 13 -2.0 p'p-DDT 21.53 -0.7 92.91 1.96 (AV) p,p'-DDT RV 107.2 2 4.1

© NMISA 2014

Reporting

Lab Code	Sample volume (mL)	Sample preparation	Analysis	Calibration	Analytical standards	Recovery% and correction applied
1 1000		Samples were extracted using automated SPE with a C18 disk. Prior to extraction samples were spiked with babelled isotopes. A labelled isotopes. A labelled isotope spiked with babelled isotopes. A labelled isotope was added for each analyte that could be present at the median of the expected concentration range. After extracts were filtered using a hydrophobic to the contract where the extracts were the present and the proposal disk of the present and store that the extracts were then reconstituted in 50 µt of iso-octane and proceeded to instrumental analysis.	LECO Pegasus III GC-TOFMS	A seven point matrix-matched calibration was used	Carbon labelled internal standards were used and the standards were added prior to extraction	Due to the use of labelled isotopes no recovery corrections were applied to these results
	1000		Rxi-XLB (30 meter; 0.25 mmID, 0.25 µm df)	IDMS	All standards purchased from ISO34 Accredited supplier	
			Three triplicate 1 µl splitless injection was used with an inlet temperature of 225°C. Over ramp: 120/2/1/10//320/1. The transfer line and source temperature was 250°C, the mass spectra was collected at rate of 8 spectra per second.		Restek Lot AO8,2301 Exp Jun 2015; Restek Lot AO8,924 Exp Nov 2016; Restek Lot AO8,2438 Exp Dec 2016; Restek Lot AO8,9487 Exp Nov 2016	
2 250		Measure 250 ml of the water using measuring cylinder in a separating hund. Add 5 p of anhytous sodium sulphate and extract it with 50ml of dichloromethane. Dry the DCM layer with anhydrous sodium sulphate. Rota evaporate at 45°C. Solvent exchange with; acedontrile for LCMSMS (azimphors methyl) or isocotane for SCMS (chlorypriphors). Transfer 2ml in GC or LCMS/MS vial for analysis. Inject 2µl for GC and 5µL for LCMS/MS analysis.	GC- MS (GC- 7890ALS, MS- 5975), LC/MS/MS (6430)	external calibration used	Dr Erhenstopher Germany, purity 99±0.5%	N/A
	250		GC/MS (DB5MS- 30 mx0.1 µmx.0.25 µl), LC/MS/MS (Zorbax Eclipse plus C18 rapid resolution HD, 2.1x50 mmx1.8 µm	5 calibration points used for all the above analytes (0.01-1mg/l)		
			GC MS-60°C to 165°C hold 1 min, 165°C to 280°C hold for 5 minutes. LC MS/MS- mobile phase composition acetonitritle: water (5nM formic acid): time 0 gradient 100% water time 15 minutes 100% acetonitrile flow rate 0.5			

Reporting

Lab Code	Estimation of uncertainty
1	For each analyte, the purity of the standard used for quantification, the recovery and reproducibility of the measurement and the error on the calibration curve were considered in the uncertainty
2	Reference Technical Report No. 1/2007 March 2007 on Measurement uncertainty revisited: Alternative approaches to uncertainty evaluation pg 54 estimation of uncertainty based on relative standard deviation of recoveries
3	UoM reported with major contributors from precision and recovery.
4	UoM was done according to the GUM method to obtain UoM.
5	Estimated UoM provided - no details
6	UoM estimated, uncertainty contributors incl. standards purity, absorbance, recovery, volume and mass.
7	None determined
8	For each analyte, the purity of the standard used for quantification, the recovery and reproducibility of the measurement and the error on the calibration curve were considered in the uncertainty
NMISA	UoM estimated using bracketing IDMS equation.

Reporting

	classical approach	limited sample vol. extracted	large vol. inj.	reduced recon. vol.	pre- concentr. & thermal desorption
lowest expected OCP conc. (ng/&)	10	10	10	10	10
sample volume used (€)	1	0.2	1	1	0.02
*expected OCP mass in extract (ng)	10	2	10	10	0.2
after drying down, reconstit. vol (m&)	1	1	1	0.1	n/a
conc. in GC vial (ng/μθ)	0.01	0.002	0.01	0.1	n/a
splitless GC inj vol (μθ)	1	1	5	1	#
mass on GC column (pg)	10	2	50	100	200
		"ND"			

^{*} assuming 100% recovery

assuming 100% recovery and desorption
© NMISA 2014

Summary - participant challenges

- Appropriate use of traceable calibration standards
- external/ internal standards
- appropriate use of uncertainty
- Cost (courier fees)
- analysis delays (sample stability)/limited time frame
- appropriate sample preparation/ pre-concentration

Summary - co-ordinator challenges

- Courier/customs challenges
- Sample stability
- Financial Feasibility
 - Labour intensive
 - CRMs
 - Limited number of participants

Workshop/meetings planned

- Re-evaluate participant needs
- · Technical training
- Consider courier options

Acknowledgements

- NMISA proficiency testing schemes are funded by the South African department of trade and industry
- Additional support from the International Technical Cooperation (ITC) of the Physikalisch-Technische Bundesanstalt (PTB), the national metrology institute of Germany
- laboratories that participated in the various rounds of the PTS
- Co-authors

Dr M Fernandes-Whaley; Dr L Quinn and Dr N Nhlapo

