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How much and how many?
Guidance on the extent of 
validation/verification studies

S L R Ellison

Science
for a safer world

Introduction

• Performance characteristics

– How many need to be examined?

• Experiment  size

– How many samples and replicates are needed?

• Minimising the workload:

– Multiple characteristics from single studies

– Maximising information with efficient experiments
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How many performance characteristics

need to be examined?

A validation puzzle
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Typical guidance on characteristics for 

study (ICH)
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ICH Q2(R1) (1994)

Typical guidance on characteristics for 

study (Eurachem)
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Typical guidance on characteristics for 

study (IUPAC)*
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Performance

Characteristics

Previous validation

Full1 Full1

New matrix

Basic

(Literature)

Bias � � �

Repeatability � � �

Reproducibility � � �

Linearity ? ? �

Ruggedness - - �

Detection limit Not mentioned – depends on use

* IUPAC Harmonised guidelines on single-laboratory validation

Selected examples for quantitative analysis shown

Note 1. “Full” validations includes collaborative study

Performance characteristic 

requirements 

• Broadly similar across sectors

• Bias/trueness, precision and linearity always required for 

quantitative methods

• Detection capability usually examined

• Ruggedness requirements depend on sector

– All agree that ruggedness can be useful in development

– Some require ruggedness as part of a standardised 

validation suite
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Experiment size

How many observations?

Selected guidance on experiment size
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Performance

Characteristics

Guidance document

ICH Q2 IUPAC SLV Eurachem

Bias/Trueness 3 levels in triplicate - 10 replicates**

Repeatability 3 levels in triplicate - 6 – 15 replicates**

Reproducibility - - 6 – 15 in duplicate**

Linearity 5 levels 6 levels in duplicate 6-10 levels 2-3 times 

each

Detection limit - 10 replicates

Ruggedness* - †ǂ - ǂ - ǂ

‘-’ No numerical guidance given

* ‘Robustness’ in ICH guidance

† Example conditions suggested
ǂ Experimental designs suggested

** Per concentration/material studied
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Test power for sample size 

calculation
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Some nomenclature

• Type I error: Incorrect rejection of the null hypothesis

– Concluding there is an effect when there is none. A false 

positive. 

• Type II error: Incorrect acceptance of the null hypothesis

– Failing to find a real effect; a false negative.

• Power (of a test): The probability of correctly rejecting 

the null hypothesis when it is false. 

– Equal to 1 minus the Type II error probability.



The concept of test power

Zero effect Effect size 

of interest

Critical value

Error 

distribution 

around 

zero
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n = 16

Power for some t tests

It takes 16 observations to find a bias 

as small as 1 standard deviation

(with 95% power)
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Calculating test power:

Required information

• A calculation of minimum sample size for a given test 

power requires:

a) The type of test (t-test, F-test etc.) and the details (One- or 

two-tailed? etc);

b) The size of the effect that is of interest;

c) The typical standard deviation s;

d) The required level of significance for the test (the Type I 

error probability α) and 

e) The desired test power, usually expressed in terms of the 

probability β of a Type II error.

- Typically 80% or 95%



Test power basis for bias experiments
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δδδδ/s 0.5 0.6 0.7 0.8 0.9 1.0 1.5 2.0 2.5 3.0

n 55 39 29 23 19 16 9 6 5 4

Number of observations for 95% power at 95% confidence.

NIST special publication 829: Use of NIST Standard Reference Materials for

decisions on performance of analytical chemical methods and laboratories

δδδδ = Size of bias to be detected

s = Available precision

n = Number of observations required

Power for precision experiments

• Can be calculated where a hypothesis test is intended

– Chi-squared test for significantly exceeding required 

precision

– F test for different precision in two groups

• Typical experiments are not very powerful for detecting 

excess dispersion

– Detecting 40% excess dispersion* requires 7 replicates at 

80% power and 18 at 95% power
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* If the required precision is σ, true precision of 1.41σ will give a positive

chi-squared test result 80% of the time with 7 replicates



Caveats

• Power calculations rely on assumptions

– Likely effect size

– Available precision

– Distribution under the ‘alternate’ hypothesis

• These assumptions may be quite poor

• Power analysis is very useful for comparing designs 

under similar assumptions

– ... but don’t over-interpret

Future directions

• Draft IUPAC guidance:

Experiments for Single Laboratory Validation Of 

Methods of Analysis: Harmonized Guidelines

• Sets 3 levels of ‘stringency’

– Verification, validation, stringent validation

• Provides ‘model experiments’

• Permits any other experiment that gives the same test 

power

• Gives guidance on number of materials, replication level, 

size of experiment and ‘stringency’ of validation
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Draft IUPAC guidance – experiment size
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Table 1: Minimum replication requirements 

Performance Characteristic Verification Standard 

validation 

Stringent 

validation 

Applicability    

Selectivity See Table 2 

note 3 

4 replicates 

each on 

control and 

interferent-

spiked 

material
Note 1

 

7 replicates each 

on control and 

interferent-

spiked 

material
Note 1

 

Calibration linearity 4 levels in 

duplicate 

6 levels in 

duplicate 

Either 10 levels 

in duplicate or5 

levels in 

triplicate 

Trueness and/or Recovery 6 10 16 

Precision:    

Repeatability 3 7 18 

Run-to-run (within-

laboratory reproducibility) 
using simple replication 

3 7 18 

Run-to-run (within-

laboratory reproducibility) 

using nested design 

3 groups of 

2 

5 groups of 2 12 groups of 2 

Look out for 

IUPAC 

consultation
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Part 2: Getting more for less



Strategies for reducing validation effort

• Get more than one performance characteristic from a 

single experiment

• Get more information from one experiment

• Use efficient designs to minimise experiment size
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Example 1: Bias from a precision 

experiment

• UK MCERTS soil testing standards set limits for bias (+-

10%) and precision (5%) of test methods

• ‘11 x 2’ design recommended

– 11 days/runs, in duplicate

• 3 soil types, ideally using CRMs

• ANOVA used to determine repeatability and intermediate 

precision

• Bias checked using a modified t test
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Example 1 cont.
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Example 1 interpretation

• Initial inspection

– Mean Cd: 35.24  (more than 10% bias)

• Significance test: is bias significantly greater than 10%?
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0 10%-10%

One-sided test

P-value (one-sided, 11* df): 0.31

* Welch-Satterthwaite calculation on ANOVA MS



Example 2: SANCO precision and 

detection capability

• 3 runs of 7 observations

• 3 concentrations
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• Precision at 3 levels

• Bias at 3 levels

• Linearity review

• Detection 

capability using

ISO 11843
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Efficient experiments

Experimental design



Efficient ruggedness designs

• Ruggedness typically requires examination of multiple 

effects

• Single-effect study needs n observations at at least 2 

levels

– 6 effects -> 12n observations

• Factorial designs can be better for small studies

– But 26 = 64 …
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AOAC recommended ruggedness

design

Experiment number

Experimental
parameter

1 2 3 4 5 6 7 8

A or a A A A A a a a a

B or b B B b b B B b b

C or c C c C c C c C c

D or d D D d d d d D D

E or e E e E e e E e E

F or f F f f F F f f F

G or g G g g G g G G g

Observed
result

s t u v w x y z

Up to 7 effects in 8 

runs

Equivalent to n = 4 

for 7 parameters



Example problem

• HPLC analysis of Tartrate for monitoring

• Method based on aqueous extraction, SPE cleanup and 

HPLC

• Factors of interest:

– Sample size

– SPE flow rate

– Additional SPE cleanup stage (is it useful?)

– LC flow rate

– LC Column temperature

– LC Buffer pH

Practical problems

• The basic AOAC design leaves no degrees of freedom

– and the tartrate design only one

• LC Temperature and buffer pH cannot be changed 
randomly during a run

– These four combinations must be in different runs

• “Quick” answer:

– Four runs allows replication of SPE experiments and 
leaves a degree of freedom for the LC factors after 
allowing for run effects 



Responses

• Primary interest: Measured tartrate or tartrate recovery

• Also of interest:

– Is the chromatography likely to be stable?

– Can we ‘measure’ chromatographic quality at the same 

time as tartrate?

• Solution: Monitor LC retention time and LC resolution 

(theoretical plate count) in the same experiment

– We get the information essentially free

Sample size - High (5g)

SPE Flow - Low (0.2/s)

Additional SPE applied

LC Flow - High (1/s)

Col Temp - High (30C)

Buffer pH - High (2.9)

Recovery effects - Biscuit

-15 -10 -5 0 5 10 15 20

Intercept: 101.0719

Change in recovery (%recovery)

Sample size - High (5g)

SPE Flow - Low (0.2/s)

Additional SPE applied

LC Flow - High (1/s)

Col Temp - High (30C)

Buffer pH - High (2.9)

Recovery effects - Jam

-15 -10 -5 0 5 10 15 20

Intercept: 94.48125

Change in recovery (%recovery)

Results - Recovery

Sample size - High (5g)

SPE Flow - Low (0.2/s)

Additional SPE applied

LC Flow - High (1/s)

Col Temp - High (30C)

Buffer pH - High (2.9)

Recovery effects - Lemonade

-15 -10 -5 0 5 10 15 20

Intercept: 102.3844

Change in recovery (%recovery)



Results – Retention time

Sample size - High (5g)

SPE Flow - Low (0.2/s)

Additional SPE applied

LC Flow - High (1/s)

Col Temp - High (30C)

Buffer pH - High (2.9)

Retention time effects - Lemonade

-1.5 -1.0 -0.5 0.0 0.5

Intercept: 4.429063

Change in Retention time (min)

Sample size - High (5g)

SPE Flow - Low (0.2/s)

Additional SPE applied

LC Flow - High (1/s)

Col Temp - High (30C)

Buffer pH - High (2.9)

Resolution effects - Jam

-600 -400 -200 0 200 400 600

Intercept: 3704.344

Change in theoretical plates

Sample size - High (5g)

SPE Flow - Low (0.2/s)

Additional SPE applied

LC Flow - High (1/s)

Col Temp - High (30C)

Buffer pH - High (2.9)

Resolution effects - Lemonade

-600 -400 -200 0 200 400 600

Intercept: 3662.781

Change in theoretical plates

Sample size - High (5g)

SPE Flow - Low (0.2/s)

Additional SPE applied

LC Flow - High (1/s)

Col Temp - High (30C)

Buffer pH - High (2.9)

Resolution effects - Biscuit

-600 -400 -200 0 200 400 600

Intercept: 3777.375

Change in theoretical plates

Results – LC Resolution



An unexpected bonus
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Implications for the tartrate method

• DO use additional SPE cleanup

• DON’T increase the sample size greatly past 2g

• DO keep the LC flow low to keep resolution high

• DO consider checking LC resolution on each sample

– if the resolution slips, the result may slip with it



Ruggedness test conclusions

• Ruggedness testing isn’t as simple as AOAC make it 

look

• Monitoring more than one ‘response’ is often simple

• ... and can add a lot to the information available

Conclusions

• Extent of validation is still not harmonised across 

sectors

• Different guidance still leaves some experiment sizes 

unclear

• Draft IUPAC Guidance may assist – watch that 

space!

• Power calculations can help, especially

in comparing experiments

• It is possible to ‘work smarter’ for method validation

– More characteristics per experiment

– Careful design

– More ‘responses’ studied
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