Measurement uncertainty in quantitative metabolomics

Teresa Mairingera, Stephan Hanna, Wolfhard Wegscheiderb
aDepartment of Chemistry, University of Natural Resources and Life Sciences – BOKU Vienna
bDepartment of General, Analytical and Physical Chemistry, Montanuniversitaet Leoben

29 May 2017

Outline

- Biological and industrial relevance
- Metabolomics and measurements
- Concentrations and fluxes
- Alternative metabolic pathways
- Analytical approach
- Uncertainty of measurement and correction
Biochemical Studies of Living Cells

- Bacteria, fungi, mammalian, plant
- Understanding metabolism
- Understanding the interactions between compartments in cells
- Understanding the effect of extraneous chemicals (drugs, poisons) on the cell
- Producing chemicals, proteins and drugs from cell cultures
- Enhancing these production pathways

Cell compartments and interactions

White arrows …. flow of information
Black arrows …. regulations

S. Klein and E. Heinzle, 2012
Metabolomics

- Provides absolute or relative metabolite levels (intracellular or extracellular)
- BUT: Concentration changes cannot unambiguously be interpreted as changes of metabolic rates (fluxes)
- Increase in concentration can be from:
 - Increased activity of producing enzymes
 - Increased pool (reservoir) within cell
 - Decreased activity of consuming enzymes

The measurement problem

- Small quantities of cell mass (mg)
- Numerous small molecules involved in metabolic pathway
- Most of the molecules are highly reactive
- Temporary development of concentration profiles is relevant
- Difficult to „freeze“ the temporary state
- Temporary state inferred from degree of labelling of molecules via 13C glucose
Analytical solution

42 analytes in *Pichia pastoris* broth for production of human superoxide dismutase

- Quenching of metabolism: sampling of cell broth into 60% MeOH at -30°C
- Filtered and stored at -80°C
- Extracted with 4 ml EtOH (75%) for 3 min at 85°C
- Automated ethoximation and trimethylsilylation
- GC-CI-TOFMS

© W. Wegscheider, Nikosia 2017
T. Mairinger et al., 2015

Human Cu-Zn superoxide dismutase mutant G93A

http://www.rcsb.org/pdb/explore/jmol.do?structureId=2ZKY&bionumber=5&view=symmetry
GC-run

- Amino acids
- Sugars
- Phosphates
- Intermediates

Mass spectrometric pattern from isotopologues

- 13-C labelling for a C-3 molecule
- Random statistical frequency 1:3:3:1

- The bigger the molecule the more isotopologues
One of 42 analytes: Sedoheptulose-7-phosphate

- 7 Trimethylsilyl and 1 Ethoximate
- 29 C atoms and 7 Si atoms

© T. Mairinger et al., 2015

Glucose-6-phosphat

Phase 1 (oxidativ)

Ribulose-5-phosphat

Ribose-5-phosphat (C5)

Xylulose-5-phosphat (C5)

© W. Wegscheider, Nikosia 2017

Stryer Biochemie, 2013
Components of uncertainty

- From analytical protocol:
 - Ionization and transmission efficiency
 - Poisson statistics
 - Background subtraction
 - Integration

- From naturally occurring isotopes:
 - ^{13}C in backbone and derivatization reagent
 - ^{28}Si, ^{29}Si, ^{30}Si in derivatization reagent

Excel solution for analytical protocol
Excel solution for naturally occurring isotopes

Data from:

<table>
<thead>
<tr>
<th></th>
<th>counting statistics</th>
<th>peak integration</th>
<th>correlation and transmission</th>
<th>Input areas</th>
<th>if not corrected</th>
<th>if not corrected</th>
<th>if not corrected</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_M</td>
<td>3609</td>
<td>1</td>
<td>1</td>
<td>3609</td>
<td>2.1</td>
<td>0.03729</td>
<td>1.7%</td>
</tr>
<tr>
<td>F_M-1</td>
<td>52784</td>
<td>1</td>
<td></td>
<td>52784</td>
<td>21.0</td>
<td>0.2246</td>
<td>0.7%</td>
</tr>
<tr>
<td>F_M-2</td>
<td>51831</td>
<td>1</td>
<td></td>
<td>51831</td>
<td>30.4</td>
<td>0.2228</td>
<td>0.7%</td>
</tr>
<tr>
<td>F_M-3</td>
<td>35625</td>
<td>1</td>
<td></td>
<td>35625</td>
<td>20.9</td>
<td>0.1797</td>
<td>0.9%</td>
</tr>
<tr>
<td>F_M-4</td>
<td>10555</td>
<td>1</td>
<td></td>
<td>10555</td>
<td>9.7</td>
<td>0.13617</td>
<td>3.1%</td>
</tr>
<tr>
<td>F_M-5</td>
<td>6813</td>
<td>1</td>
<td></td>
<td>6813</td>
<td>4.0</td>
<td>0.05889</td>
<td>1.4%</td>
</tr>
<tr>
<td>F_M-7</td>
<td>788</td>
<td>1</td>
<td></td>
<td>788</td>
<td>0.4</td>
<td>0.01638</td>
<td>0.3%</td>
</tr>
</tbody>
</table>

Monte Carlo Simulation

© W. Wegscheider, Nikosia 2017
Results for Sedoheptulose Phosphate

<table>
<thead>
<tr>
<th>mass</th>
<th>IF uncorr</th>
<th>u(IF uncorr)</th>
<th>IF corr</th>
<th>u(IF corr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IF_M</td>
<td>2,1</td>
<td>0,04</td>
<td>4,7</td>
<td>0,09</td>
</tr>
<tr>
<td>IF_M+1</td>
<td>31,0</td>
<td>0,23</td>
<td>65,4</td>
<td>0,78</td>
</tr>
<tr>
<td>IF_M+2</td>
<td>30,4</td>
<td>0,22</td>
<td>26,3</td>
<td>0,79</td>
</tr>
<tr>
<td>IF_M+3</td>
<td>20,9</td>
<td>0,18</td>
<td>3,5</td>
<td>0,60</td>
</tr>
<tr>
<td>IF_M+4</td>
<td>9,7</td>
<td>0,10</td>
<td>-1,7</td>
<td>0,35</td>
</tr>
<tr>
<td>IF_M+5</td>
<td>4,0</td>
<td>0,06</td>
<td>-0,7</td>
<td>0,22</td>
</tr>
<tr>
<td>IF_M+6</td>
<td>1,4</td>
<td>0,03</td>
<td>-0,2</td>
<td>0,10</td>
</tr>
<tr>
<td>IF_M+7</td>
<td>0,4</td>
<td>0,02</td>
<td>0,0</td>
<td>0,05</td>
</tr>
</tbody>
</table>

© W. Wegscheider, Nikosia 2017

Conclusions

- The analytical protocol can be considered fairly robust
- The corrections lead to significantly different „true“ isotopic signature from labelling
- The corrections for natural isotopic abundances cause an increase of uncertainty of about a factor of 3 - 4
- The significance of these corrections on the flux modelling is not yet established

© W. Wegscheider, Nikosia 2017