Measurement Uncertainty in Microbiological Examination of Foods

Eurachem – AOAC Europe Workshop 29 May 2017

Hilde Skår Norli

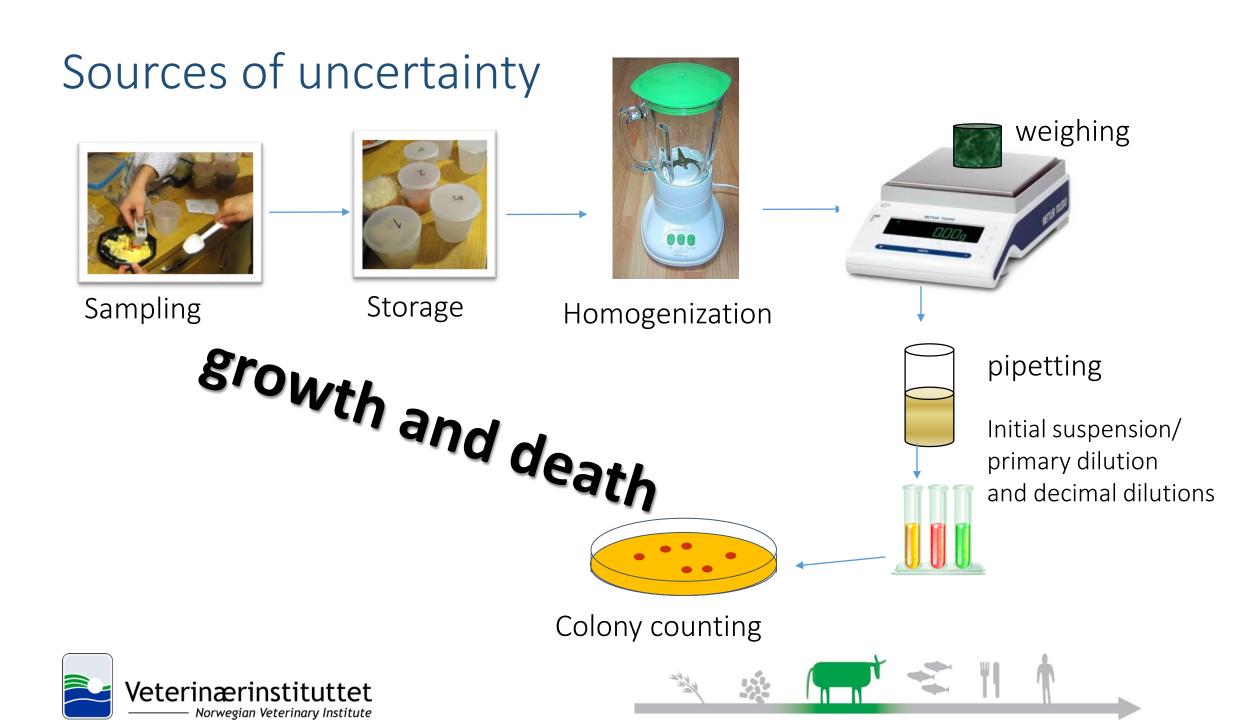
Norwegian Veterinary Institute

Contents

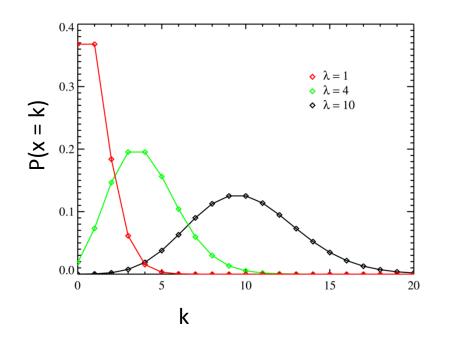
- Requirements from accreditation bodies
- Sources of uncertainty
- Distribution & expected standard deviations on microbiological examinations
- Estimation of MU in quantitative methods using standard deviation of internal reproducibility
- Checking the estimate

Requirements Accreditation Agency (Norway)

Qualitative analysis

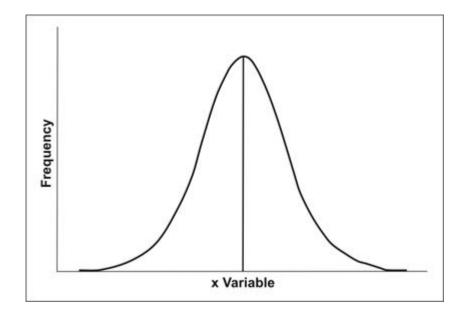

- Identifying and weighting sources of uncertainties (2002)
- Be aware of /estimate the LOD, sensitivity and specificity

Quantitative analysis


- Identifying and weighting uncertainty sources
- Estimate the measurement uncertainty (2010)

Distribution - Poisson

 Dividing the population in two parts; whereof one of the two happenings occurs with a probability p and the other with a probability of q, and p + q = 1.
When one of the happenings p is small we


When one of the happenings, p, is small we have Poisson distribution.

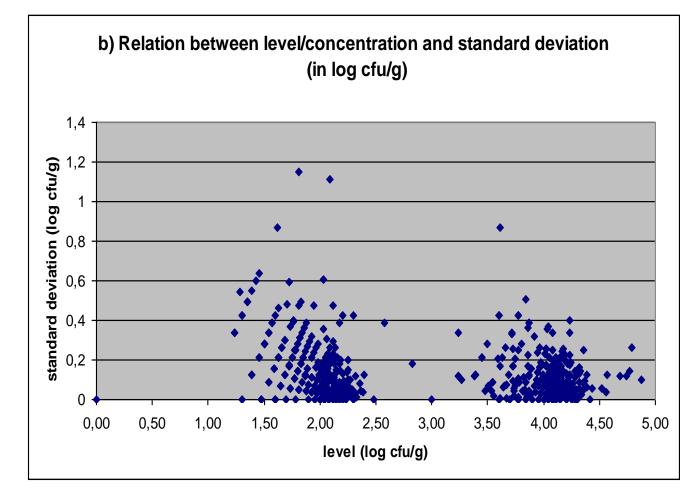
 The probability of finding the target bacteria might be small -> Poisson distribution

Distribution - Normal

In order to obtain normal distribution the results need to be transformed into \log_{10} before statistical calculations are carried out.

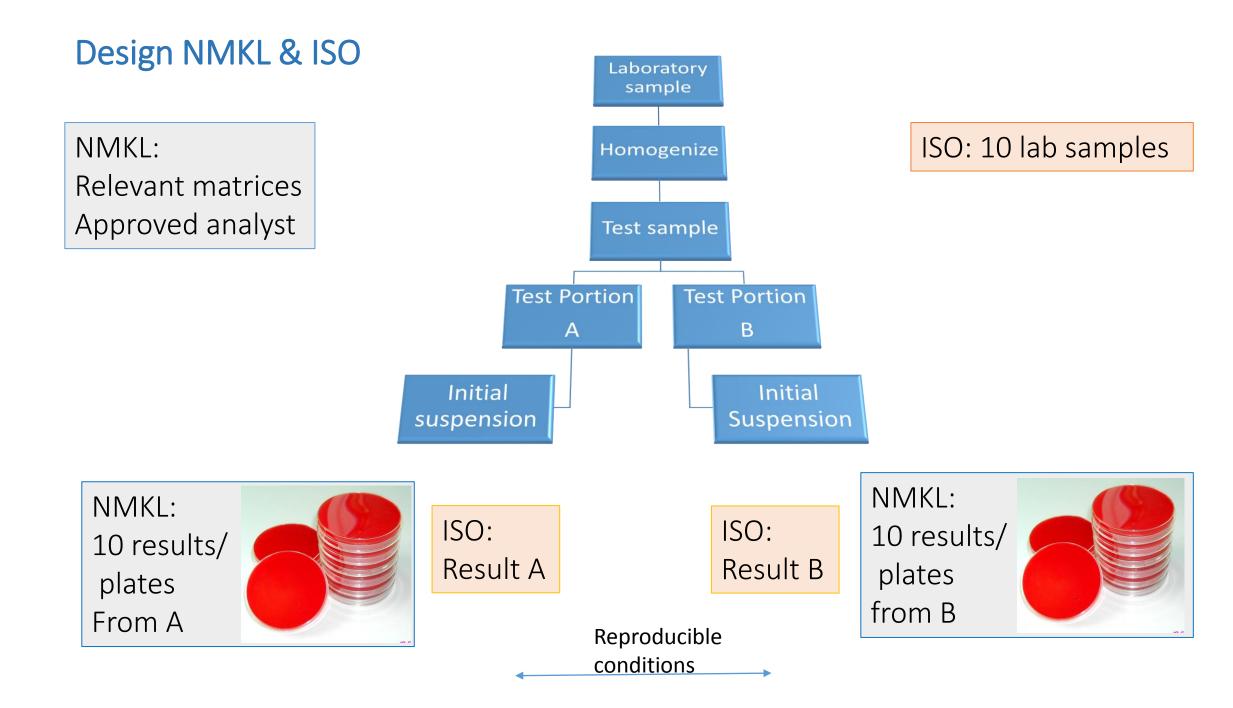


Use of RSD RSD = relative standard deviation RSD = SD/ $X \cdot 100$


Chemistry: RSD is used in MU

Microbiology: RSD should not be usedSD is constant for different levels

Relation between level and SD


- 681 parallels (1362 analyses) of different microbes
- no increase in SD by increasing level, the relation is almost constant. No RSD!
- 98% of the results are below 0.5 log₁₀ cfu/g,
- 96% of the results are below 0.4 log₁₀ cfu/g,
- 94% of the results are below 0.35 log₁₀ cfu/g,
- SD < 0.4 log₁₀ cfu/g (at 95% confidence)

Estimation of Measurement Uncertainty

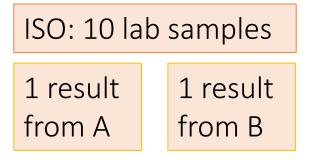
NMKL Proc 8, 2004 and ISO/NP 19036:2016 (current 2006)

- Use of log₁₀ data
- Global approach (not step by step)
- Standard deviation of the internal reproducibility
 - Reproducible conditions: different time, analysts, reagents
- Standard deviation of reproducibility of the method derived from an interlaboratory study
- Standard deviation of reproducibility derived from an PT-scheme.

MU Study Plan

- Homogenize before and after microbial inoculate is added
 - ISO (EURL Listeria): For a homogeneous matrix ; s_{matrix}= 0.1 log cfu/g
- Use of stressed organisms
- Not too low contamination level (Poisson distribution)
- Otherwise no need for several levels as s_r (in log_{10}) is constant

MU Design


= 20 results

NMKL:

- Similar to collaborative study

$$S_{iR} = V(S_{r}^{2} + S_{L}^{2})$$

- S_{iR} = internal reproducibility,
- S_r = repeatability
- S_L = standard deviation between-series

ISO:

Standard deviation of the mean of the difference.

$$D = A_1 - B_1$$
$$S_{iR} = S_D$$

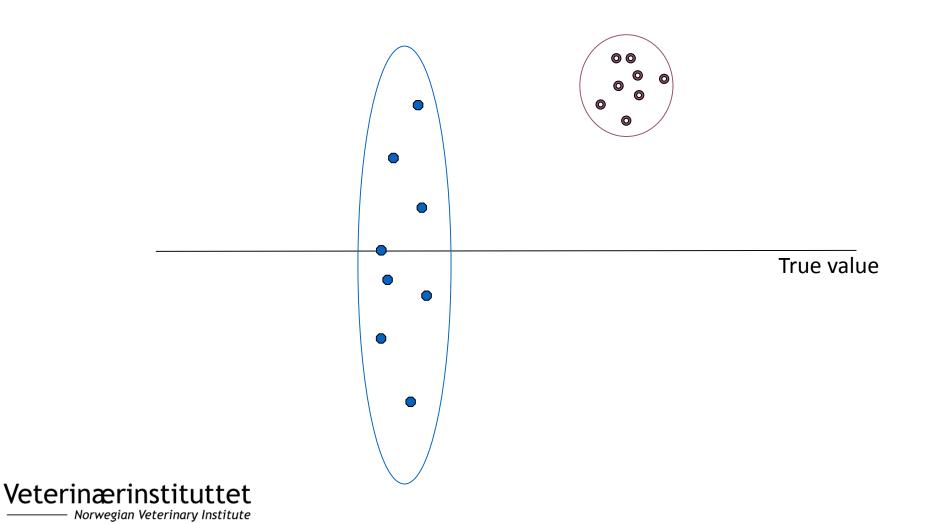
Example: NMKL

No	А	В
1	3.67	3.50
2	3.66	3.66
3	3.72	3.50
4	3.85	3.70
5	3.70	3.40
6	4.02	3.80
7	3.87	3.65
8	3.90	3.50
9	3.74	3.48
10	3.45	3.50

$MU = 2 \cdot u = 2 \cdot s_{iR}$	0.38		
Reproducibility, s _{iR}	√(0.14 ² +0.015)= 0.19		
s _L ² – variance between A&B	0.13 ² +0.14 ² /10	0= 0.015	
SD of A+B, s _x	$\sqrt{\frac{(3.76 - 3.66)^2 + (3.57 - 3)^2}{1}}$.662) =0.13	
Mean of A+B	(3.76+3.57)/2 = 3.66		
Combined SD of A+B	$\sqrt{(0.16^2 + 0.13^2)}$)/2=0.14	
SD for each, A & B	0.16	0.13	
Mean for each, A & B	3.76	3.57	

Example: ISO

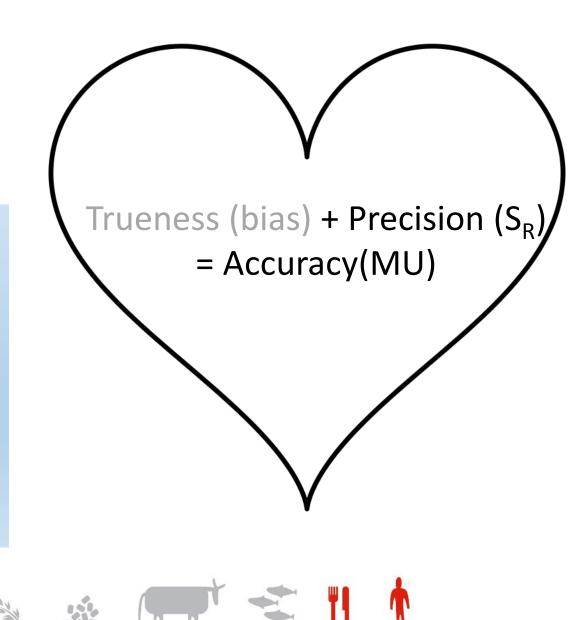
No	А	В	(a-b) ²
1	3.67	3.50	0.029
2	3.66	3.66	0.000
3	3.72	3.50	0.048
4	3.85	3.70	0.023
5	3.70	3.40	0.090
6	4.02	3.80	0.048
7	3.87	3.65	0.048
8	3.90	3.50	0.160
9	3.74	3.48	0.068
10	3.45	3.50	0.002
Sum			0.52


$$s_{iR} = \sqrt{\frac{\sum_{i=1}^{n} (a_i - b_i)^2}{2n}} = \sqrt{\frac{0.52}{2 \cdot 10}} = 0.16$$

$u = v(s_{iR}^2 + s_{Poisson}^2 + s_{matrix}^2)$	$= \sqrt{(0.16^2 + 0.1^2)}$ = 0.19
MU = 2∙u	= 2· 0.19 = 0.38
Unit	log cfu/g

NMKL: $MU = 2 \times s_R$	0.38 log cfu/g
---------------------------	----------------

Trueness & precision


Trueness / Bias

- Use of CRM
- Participation in PT-schemes

Participate in PT to check if the estimate of MU is OK

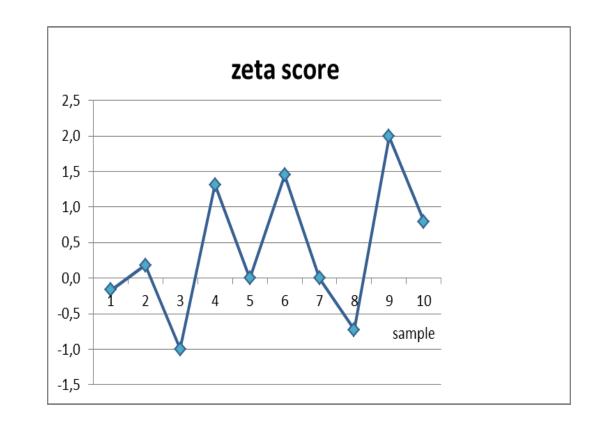
$Y \in X \pm MU$

Y = "true" value ∈ = belongs to X = our obtained value

Checking the estimate of MU

Zeta-score,
$$\zeta = \begin{pmatrix} (X-Y) \\ \sqrt{u_{lab}^2 + \left(\frac{s_{PT}}{\sqrt{n}}\right)^2} \end{pmatrix}$$
 Z-score

X = our result Y = "true result" (mean value) u = standard uncertainty of our method s_{PT} = SD of true result (participants)


Checking the estimate of MU

$-2 \leq zeta / z - score \geq 2$

Yes: the MU is OK, i.e. if S_R is OK (≤0.4 log cfu/g)

1: MU might be too narrow and needs to be expanded.

2: MU might be too wide

Most importantly, Competence!!

References

- NMKL Procedure No. 8, 4th Ed., 2004: Measurement of uncertainty in quantitative microbiological examination of foods
- NMKL Procedure No. 32, 2017 Verification of microbiological methods
- ISO/NP 19036:2016. Microbiology of the food chain Guidelines for the estimations of measurement uncertainty for quantitative determinations

