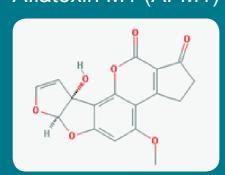
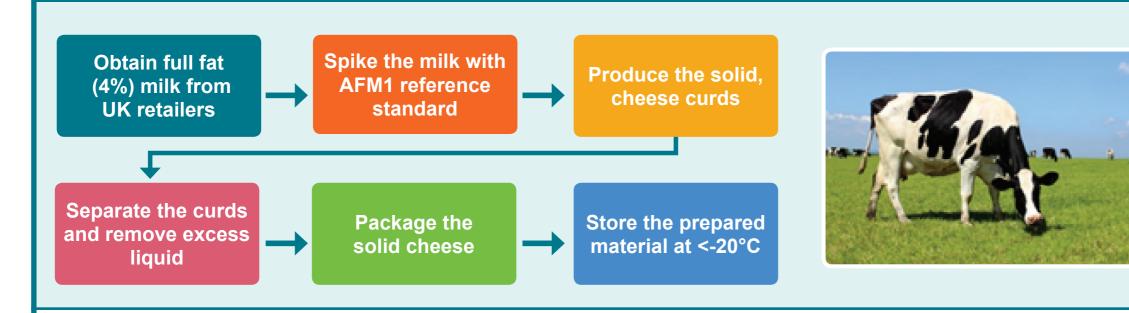
# Development of a matrix proficiency test material for the measurement of Aflatoxin M1 in cheese




## Savvas Xystouris; Matthew Whetton


LGC, 1 Chamberhall Business Park, Chamberhall Green, Bury. BL9 0AP. United Kingdom

#### Fig 1. Structure of Aflatoxin M1 (AFM1)

#### Introduction



Aflatoxins are a family of toxins produced by certain fungi which can contaminate agricultural crops such as maize (corn), groundnuts, treenuts, spices and other dried foods. Exposure to aflatoxins is associated with an increased risk of liver cancer. Aflatoxin M1 (AFM1) is the principal hydroxylated metabolite of aflatoxin B1, which can be present in milk from animals fed with contaminated feed. AFM1 can subsequently be found in a range of dairy products, posing a significant potential risk to human health and as a result Maximum Residue Levels (MRLs) have been established for AFM1 in milk and related products, e.g. the MRLs applied by a number of countries for AFM1 in cheese is 0.25µg/kg.



## **Trial batch production**

A 'target' concentration of, approximately 0.5 µg/kg was chosen and the material produced according to the established method. Homogeneity and stability testing were carried out by an external sub-contractor on 5 randomly selected samples, analysed in duplicate. An average recovery of 105% and a measurement uncertainty of 15% of the measurement result (K=2) were reported. The power of the statistical test and the calculated homogeneity of the sample was acceptable at a value of 0.054 µg/kg, which corresponds to 10% of the AFM1 concentration in the sample.

**Table 1.** Calculated factors for the assessment of Homogeneity for AFM1 in cheese (trial batch).

| Mean result                        | 0.535   |      |
|------------------------------------|---------|------|
| Standard deviation                 | 0.0227  |      |
| Analytical variance                | 0.00053 |      |
| Sufficient precision (10% of mean) | 0.43    | PASS |
| Cochran's test, critical value     | 0.841   |      |
| Cochran's value                    | 0.679   | PASS |
| Homogeneity critical value         | 0.0016  |      |
| Sampling variance                  | 0.0000  | PASS |

### **Production of Sample 62 for the** QDCS scheme, Round 252

**Table 3.** Calculated factors for assessment of Homogeneity AFM1 in cheese (QDCS Rd252).

| Mean result                        | 0.318    |      |
|------------------------------------|----------|------|
| Standard deviation                 | 0.0159   |      |
| Analytical variance                | 0.000263 |      |
| Sufficient precision (11% of mean) | 0.46     | PASS |
| Cochran's test, critical value     | 0.602    |      |
| Cochran's value                    | 0.315    | PASS |
| Homogeneity critical value         | 0.0008   |      |
| Sampling variance                  | 0.0000   | PASS |

Table 4. Recovery of AFM1 in cheese

out the written permission of the copyright holder. © LGC Limited, 2017. All rights reserved, XXXX/CD/0917

| Volume of milk          | 13.5  | litre |
|-------------------------|-------|-------|
| AFM1 spike              | 0.144 | μg/l  |
| Weight of cheese solids | 2.51  | kg    |
| AFM1 concentration      | 0.318 | μg/kg |
| Total weight of AFM1    | 0.796 | μg    |
| AFM1 Recovery           | 39.80 | %     |

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording or any retrieval syste

**Table 2.** Stability assessment of AFM1 in cheese (trial batch).

| Date       | Measurement                                  | Result μg/kg |      |
|------------|----------------------------------------------|--------------|------|
| 15/11/2016 | Mean result, homogeneity                     | 0.535        |      |
| 26/01/2017 | Mean result, stability*                      | 0.520        |      |
|            | Allowable difference<br>(SDPA = 10% of mean) | 0.016        |      |
|            | Difference                                   | 0.015        | PASS |

<sup>\*</sup>Materials were stored frozen at <-20°C prior to dispatch and for assessment of stability.

#### Results

The majority of participants used HPLC for the analysis of AFM1, which is the most common internationally recognised official method. A relatively large robust standard deviation was observed for the data, although this was not surprising given the average measurement uncertainty reported was approximately 30% of the measured value.

**Table 5**. Results of participant analysis

| PT Round | Sample    | Homogeneity result | Homogeneity SD | Participant<br>median | Participant robust SD |
|----------|-----------|--------------------|----------------|-----------------------|-----------------------|
| QDCS 252 | Sample 62 | 0.318 µg/kg        | 0.016 μg/kg    | 0.28 μg/kg            | 0.12 μg/kg            |

#### **Conclusions**

- The stability of aflatoxin M1 during milk fermentation processes has been studied and AFM1 concentrations above EU MRLs have been reported.
- A 'soft cheese' containing AFM1 has been produced from milk, entirely in the
- A predictable recovery of AFM1 was obtained in the cheese, enabling levels of interest to be achieved.
- The material was sufficiently homogeneous and stable for use as a PT sample, with an acceptable SDPA (potentially in the range of 10-20%, relative to the assigned value).

www.lgcpt.com • ptcustomerservices@lgcgroup.com