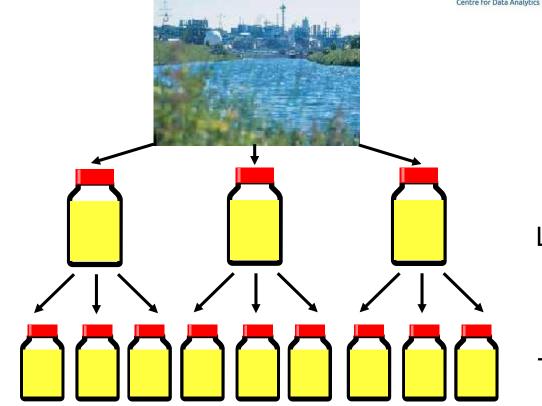


'(Re)introduction to statistics: dusting off the cobwebs'

Vicki Barwick	Aoife Morrin
LGC	Insight Centre for Data Analysis
	DCU

Data – Quality, analysis and integrity workshop Dublin Castle 14-15 May 2018

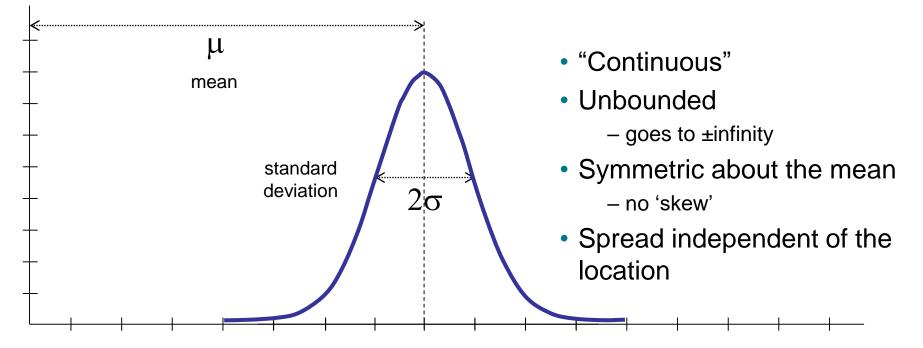


- Sample vs population statistics
- Properties of the normal distribution
- Basic summary statistics
 - mean, standard deviation, relative standard deviation, standard deviation of the mean
- Significance testing
 - procedure
 - different types of test (t-test, F-test, ANOVA)
- Applications of statistics
 - setting limits on control charts
 - interpreting PT scores (z-scores)

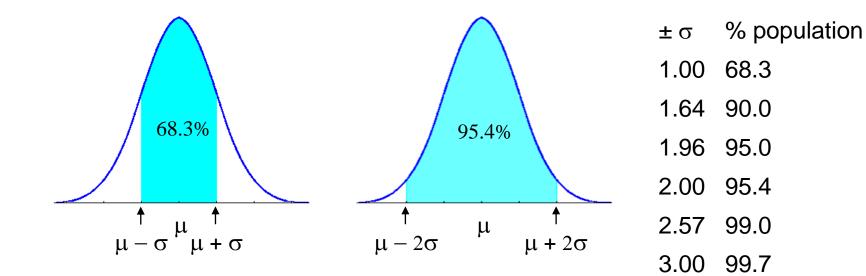
Sample vs population (1)

Laboratory samples

Test samples


Sample vs population (2)

- Laboratories are limited in the number of measurements they can make
- Assume that observations obtained in the laboratory are a random sample from a potentially infinite population
- Population parameters (population mean, population standard deviation)
 - unknown true values of interest
 - represented by Greek alphabet (μ , σ)
- Laboratories use and report 'sample statistics'
 - provide an estimate of the population parameters
 - represented by Latin alphabet (\bar{x} , s)


The normal distribution

Areas under the normal curve

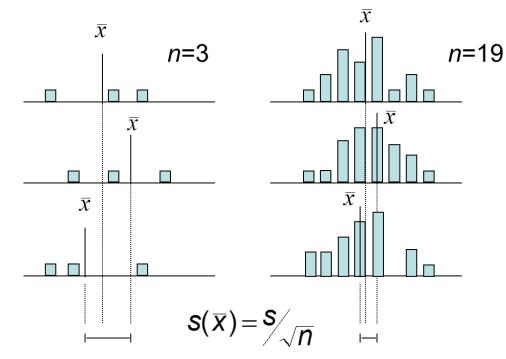
Summary statistics

Lead (µg/L)					
152	151				
155	145				
161	155				
151	149				
156	150				

Sample mean

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n} = 152.5 \ \mu g/L$$

Sample standard deviation


$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}} = 4.4 \ \mu g/L$$

%relative standard deviation (coefficient of variation)

$$%$$
rsd = $%$ CV = $\frac{s}{\overline{x}} \times 100 = 2.9\%$

Standard deviation of the mean

where s is the sample standard deviation

• Random errors: cause replicate results to differ from one another, so that the individual results fall on both sides of the average value

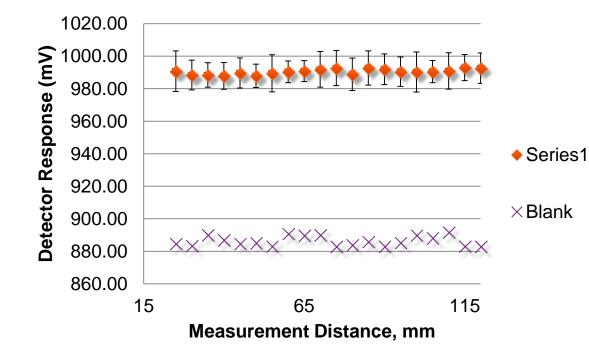
- affect precision

• Systematic errors: cause all the results to be in error in the same sense (e.g. too high)

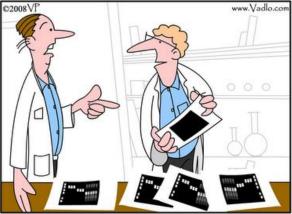

- bias in a method

 Gross errors: major errors where the experiment/measurement should be abandoned

- should be easily identifiable - clear outliers etc.

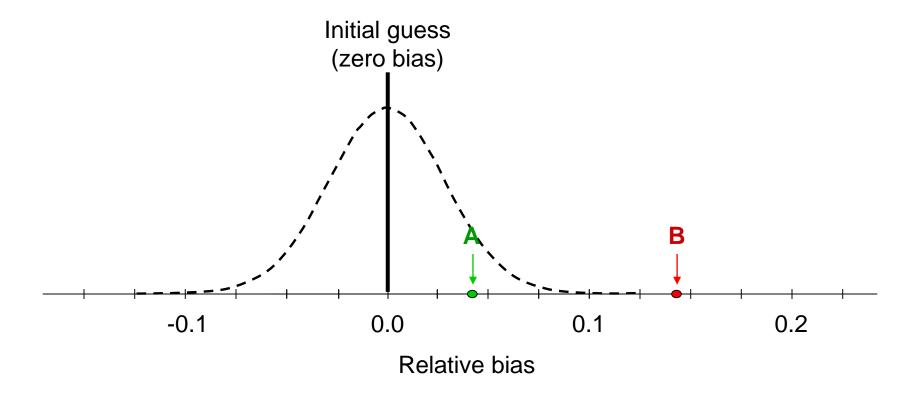

Processing experimental data – systematic vs random error

Processing experimental data – systematic vs random error


- Error bars quantify the variability
- In this case, the standard deviation is represented by the error bars
- Error bars are representing systematic and random error here!!!

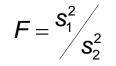
Principles of significance testing

- Make a guess about the true state of affairs (H₀)
 - there is no significant bias/systematic error
 - the precision of two methods is equivalent
 - there are no outliers in a data set
- Ask whether observations are consistent with that guess
 - we calculate the probability that any difference between the observation data and that guess arises solely from random error
- Types of parametric tests
 - t-test: Comparing means
 - F-test: Comparing variances*
 - analysis of variance (ANOVA): Comparing multiple sets of data


*variance = s^2

Data don't make any sense, we will have to resort to statistics.

Principles of significance testing



• Test statistic

"A function of a sample of observations which provides a basis for testing a statistical hypothesis"

• Examples:

$$t = \frac{(\bar{x} - x_0)}{s/\sqrt{n}}$$

Significance testing procedure

- 1. State the question/hypothesis
- 2. Select the appropriate test
- 3. Choose a level of significance
- 4. Decide number of tails
- 5. Calculate degrees of freedom in the data
- 6. Look up the critical value (tables or software)
- 7. Calculate the test statistic from the data
- 8. Compare test statistic with critical value

If test statistic > critical value, result of test is significant \rightarrow Data not consistent with initial hypothesis

One sample *t*-test

Alternative Hypothesis	t	Tests for
Not equal to <i>x</i> ₀ (two-tailed)	$t = \frac{ \overline{x} - x_0 }{s/\sqrt{n}}$	Any difference?
Greater than x ₀ (one-tailed)	$t = \frac{(\overline{x} - x_0)}{s/\sqrt{n}}$	Exceeding reference value/upper limit
Less than <i>x</i> ₀ (one-tailed)	$t = \frac{(x_0 - \overline{x})}{s/\sqrt{n}}$	Below reference value/lower limit

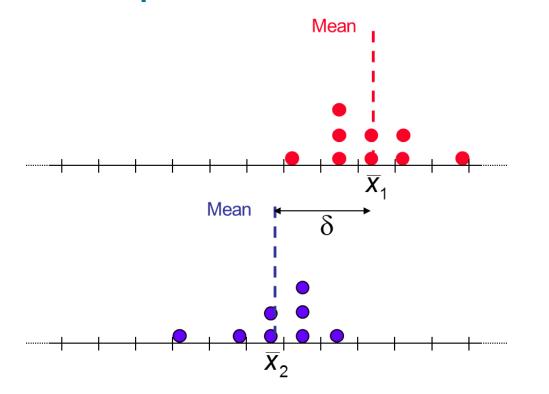
Significance: *t* > *t*_{crit}

One sample t-test - example of bias evaluation

Data: Bias evaluated through repeat analysis of anhydrous milk fat CRM

- certified value for cholesterol: 274.9 mg/100 g
- mean of results from 11 replicate analyses: 269.3 mg/100 g
- standard deviation of results: 1.692 mg/100 g
- State your question:
 - is there a significant difference between the mean of results from the replicate analysis of a CRM and the certified value?
- Select the test:
 - comparing a mean with a reference value single sample t-test
- Choose level of significance:
 - 5% significance (95% confidence)
- Decide number of tails:
 - two-tailed (interested in a difference in either direction)

Example (continued)


- Calculate degrees of freedom:
 - degrees of freedom: n-1 = 10
- Look up critical value:
 - from tables/software, two tailed Student *t* value for 95% confidence and 10 degrees of freedom: 2.228
- Calculate test statistic from experimental data:

$$t = \frac{|\bar{x} - x_0|}{s/\sqrt{n}} = \frac{|269.33 - 274.7|}{1.692/\sqrt{11}} = 10.53$$

• Calculated t > critical value (t_{crit}):

 $- \rightarrow$ Mean value of the experimental results is significantly different from certified value

Significance testing between sets of data Two-sample *t*-test

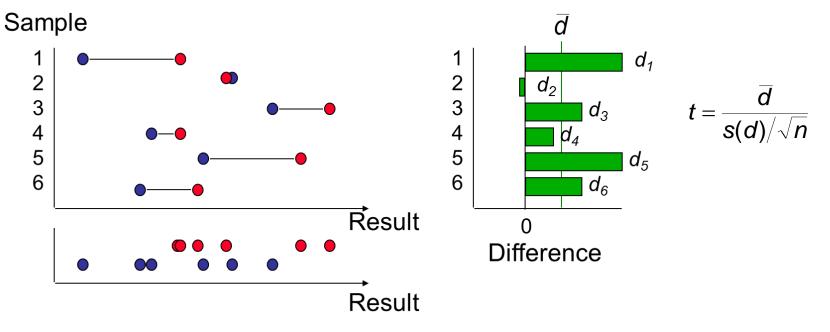
 $t = \frac{\overline{x}_2 - \overline{x}_1}{S_{pool} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$

$$s_{pool} = \sqrt{\frac{s_1^2(n_1 - 1) + s_2^2(n_2 - 1)}{n_1 + n_2 - 2}}$$

 $v = n_1 + n_2 - 2$

(Assumes equal variance)

Two sample t-test - example


- BET surface area analysis was carried out on CNT samples that were untreated and treated by argon plasma (m²/g)
- (Assuming variances to be the same,) does the argon plasma treatment significantly improve surface area?

Untreated (m²/g)	Argon plasma treated (m²/g)
184	281
192	406
194	362
192	327
185	327
191	376
207	

Significance testing between paired samples Paired sample *t*-test

Need Natural Pairing of the data

Paired sample t-test - example

Tablet UV Near-IR Batch No. 83.15 84.63 2 84.38 83.72 3 84.08 83.84 4 84.41 84.20 5 83.82 83.92 6 84.16 83.55 7 84.02 83.92 83.60 8 83.69 9 84.13 84.06 10 84.24 84.03

Insic

Centre for Data Analytics

LGC

- Where two methods of analysis are compared by applying both methods to analyse the SAME set of test materials
- The paracetamol concentration (mg/g) was determined in tablet batches by two different methods
 – UV and IR – do the methods give the same results?

Excel[®] data analysis tools

X	a 19 - 1	(24 - ≠		Treps.	1			No. of Concession, Name	Book1 -	Microsoft	Excel									×
Fil	Ho	ome	Insert P	age Layout	Formulas	Data Re	view Vi	ew											⇔ 🕜 ⊏	
		*				Connections	2↓ <u>2</u> 2		K Clear		-+		1	E ?				♥∃ Shov Detail ■∃ Hide Detail	Data A	nalysis
From		From Text	From Other Sources *	Existing Connections	Refresh	🕫 Edit Links	Z Sort	Filter	Advanced	Text to Columns	Remove Duplicates	Data Validation	Consolidate	What-If Analysis *	Group	Ungroup	Subtotal			
		Get Ex	ternal Data		Cor	nections		Sort & Fi	lter			Data Too	ls			C	utline	G	Amaly.	
	B22		- (**	f _x																~
	A	В	С	D	E	F	G	н	1	J	К	L	M	N	0	P		Q R	S	
1																				
2																				
3																				

Data Analysis		? <mark>x</mark>
<u>A</u> nalysis Tools		ОК
Histogram		
Moving Average		Cancel
Random Number Generation		
Rank and Percentile		
Regression		Help
Sampling		
t-Test: Paired Two Sample for Means	E	
t-Test: Two-Sample Assuming Equal Variances		
t-Test: Two-Sample Assuming Unequal Variances		
z-Test: Two Sample for Means	-	

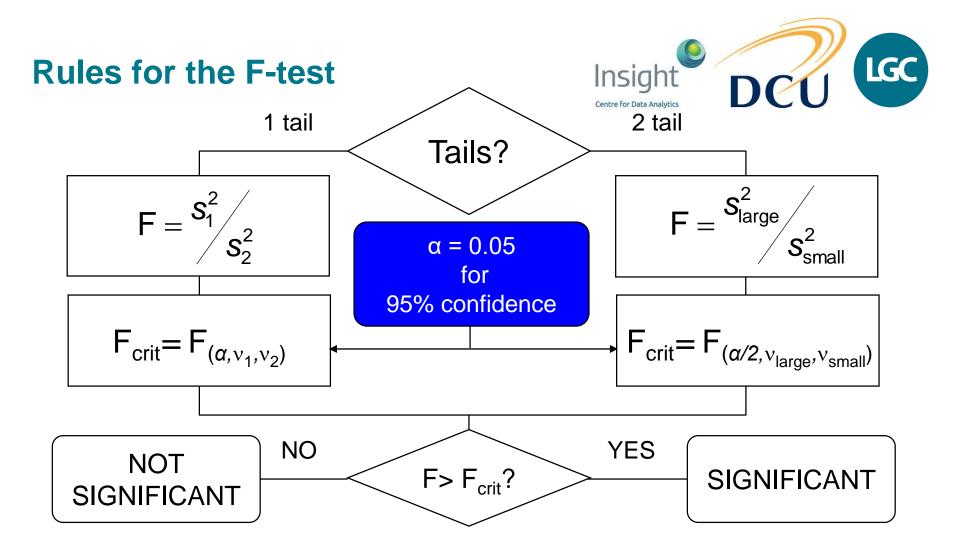
Input			
Variable <u>1</u> Range:	1	1	ОК
Variable <u>2</u> Range:			Cancel
Hypothesized Mean Differe	nce:		Help
Labels			
Alpha: 0.05			
Alpha: 0.05		E.	
Alpha: 0.05 Output options			

Interpreting significance test results in Excel®

- Excel also quotes the results of a significance test in terms of a probability (p-level)
- Probability of obtaining a test statistic at least as extreme as the one that was actually observed assuming that H₀ is true
- If p-level > 0.05 it is not significant, i.e., your data is likely to agree with the H_0
- If p-level < 0.05 it is significant, i.e., your data is not likely to agreee with the H₀

Publishing/reporting stats - examples

- "A t-test was performed to determine if there was a significant difference between film thickness when films were deposited by spin-coating and printing. The mean film thickness for spin-coating (X=772.57, s = 13.56, n=7) was not significantly different to that for printing (X=780.86, s=10.42, n=7), test statistic = 1.28, two-tail, p=0.22, providing no evidence that film thickness was influenced by the method of deposition."
- "A t-test was performed to determine if there was a greater swelling response achieved in the presence of catalase. The difference in swelling responses was found to be significant after a swelling time of 495 min (p<0.05; one-tailed; n=3)."



• To compare the spread, use the ratio of variances:

The F-test

$$\mathsf{F} = \frac{\mathsf{S}_1^2}{\mathsf{S}_2^2}$$

• This ratio, the 'F-statistic', can be compared with values in tables (the 'F-test')

Finding F_{crit}

- Calculate degrees of freedom (v) $v_1 = n_1 - 1$ $v_2 = n_2 - 1$
- Use standard table of values
- <u>Or</u> use Excel Data Analysis Tool or F.INV.RT function
- Significance: F>F_{crit}

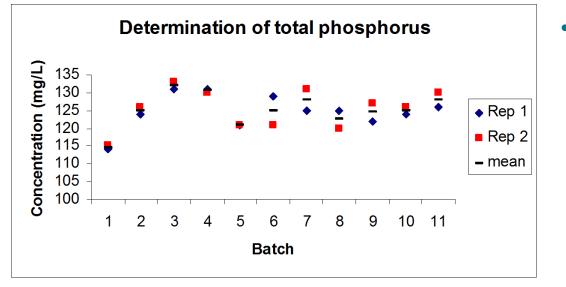
	/ Z						
		ν	' 1				
v_2	3	5	9	80			
3	15.4	14.9	14.5	13.9			
5	7.8	7.1	6.7	6.0			
9	5.1	4.5	4.0	3.3			
8	3.1	2.6	2.1	1.0			

97.5% (α =0.025) 1-tailed F table (used for 95% (α =0.05) 2-tailed test)

Excel output – F-test

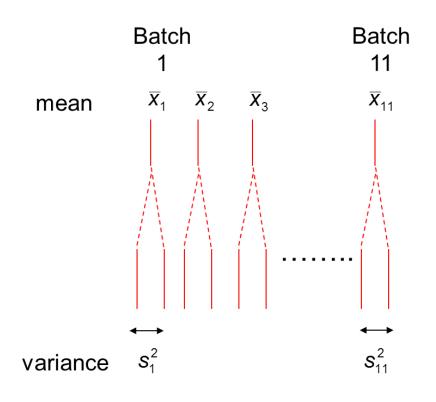
- BET analysis question from earlier – we want to verify if the assumption is true – that the variances are the same?
- Note: need to use an Alpha value of 0.025 for a 95% confidence level

Input		ОК
Variable 1 Range:	\$B\$3:\$B\$8	Cancel
Variable 2 Range:	\$A\$3:\$A\$9	
Labels		
Alpha:	0.025	
Output options		
Output Range:	\$B\$13	
New Worksheet Ply:		
New Workbook		



F-Test Two-Sample for \	/ariances	
	Variable 1	Variable 2
Mean	346.5	192.1429
Variance	1940.3	57.14286
Observations	6	7
df	5	6
F	33.95525	
P(F<=f) one-tail	0.000251	
F Critical one-tail	5.987565	

Comparing multiple groups of data


- Variation between duplicates (within-batch)
- Variation between batches measurements made on different days

Does the variation increase significantly when measurements are made on different days?

Within- and between-group effects Insight

Total variance has contributions from

LGC

 Random variation between duplicates (within-batch)

Centre for Data Analytics

 Variation between results obtained in different batches (between-batch)

Analysis of variance (ANOVA)

- ANOVA separates different sources of variation
 - e.g. the within- and between-batch variation in results
- Different sources of variation can be compared to determine whether they are significantly different
 - e.g. is the between-batch variability in results significantly greater than the withinbatch variability?
- H₀ is that all samples are drawn from same population
- Method validation precision study
 - can be useful to know where variation in results is coming from
 - within-batch vs. between-batch

ANOVA: single factor - example

 4 different batches of disposable, screen-printed electrodes are used to fabricate a lactate biosensor. The electrodes are modified with enzyme and their amperometric responses to lactate are measured (μA) (n=3). Before combining all of the data, one-way ANOVA is used to determine if the different batches of electrodes are giving statistically different results.

Replicates	Batch 1	Batch 2	Batch 3	Batch 4
1	10.2	10.6	10.3	10.5
1	10.2	10.0	10.5	10.5
2	10.2	10.8	10.4	10.7
3	10.0	10.9	10.7	10.4
Mean				

ANOVA: single factor in Excel®

- There are sources of error in all measurements, so its normal for the means to be different. We want to determine if the error is:
 - just in the measurement (random error) or
 - between the batches (systematic error)
- We have two potential sources of variance:
 - run to run errors
 - the batches may actually be different

ANOVA: single factor in Excel®

	Sum of S	Squares	Mean S	Square (σ_0^2)	∕ MS _{between}	/MS _{within}
ANOVA	\mathbf{Y}		\checkmark	K		
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.61583333		0.205277	78 7.94623656	0.00876534	4.06618055
Within Groups	0.20666667	3	0.025833	33		
Total	0.8225	1				

- SS sum of the squares
 - between groups: the difference in the means between batches
 - within groups: the random error within a given batch
- df degrees of freedom
- MS mean of the SS values (SS/df)

ANOVA: single factor in Excel®

- H₀: All samples are drawn from same population. Specifically, there is no major difference between means of batches
- $F > F_{crit}$, H_0 is rejected

- P-value < 0.05 H_0 is significant
- Therefore, samples are not drawn from same population. Specifically there is a major difference between the means of the batches

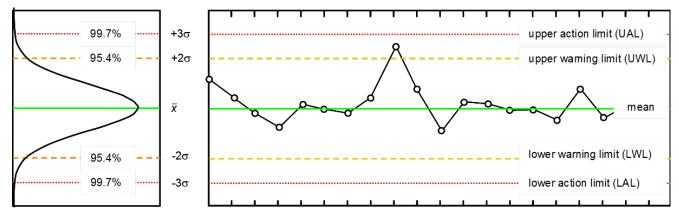
NOTE: ANOVA does NOT indicate WHICH batch is different from others – Need to look at a post-hoc analysis

ANOVA: Single Factor - Total Phosphorus

ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	459.8182	10	45.98182	5.620	0.004312	2.854
Within Groups	90.00	11	8.181818			
Total	549.8182	21				

 $F > F_{crit}$, P<0.05 \Rightarrow Significant difference between results obtained in different batches

Applications of statistics in QC & QA


- Interpretation of quality control results
 - control charts
- Proficiency testing scores

Shewhart chart (x-chart)

- Used to monitor bias and precision
- Individual control values plotted in time ordered sequence

- Key features
 - central line
 - upper and lower warning limits
 - upper and lower action limits

Also known as an 'individuals chart'

Scoring PT results

- PT results commonly reported as a performance score
 - calculated by the scheme organiser
- Z-score (most common score in analytical chemistry) is calculated as

$$z_i = \frac{(x_i - x_{pt})}{\sigma_{pt}}$$

 x_i is the result submitted by the participant

- x_{pt} is the assigned value determined by the co-ordinator
- σ_{pt} is the standard deviation for proficiency assessment

Interpreting PT results

Thank you for listening

Enjoy the rest of the workshop