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Introduction

In method validation, the performance of the method is characterized and then assessed against criteria

derived from fitness-for-purpose considerations.

Performance characteristics (e.g. trueness, 

reproducibility precision, sensitivity, 𝐿𝑂𝐷)

Performance criteria (e.g. 𝑠𝑅 ≤ 30%, 𝐿𝑂𝐷 ≤ 1 CFU
per test portion)
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Introduction

• In many modern applications, non-targeted methods are applied (food fraud, detection of all potentially 

toxic substances in a water sample, contamination via NIAS migration).

• The aim of this presentation is to discuss the characterization and assessment of method performance in 

connection with non-targeted methods.
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Introduction

• Data from non-targeted workflows are typically used in connection with classification problems.

• Typical examples include:

– Food origin

– Species identification

→ In this presentation, the discussion will be based on 

such a classification problem from the field of 

microbiology.
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Identification of a particular type of Staphylococcus aureus

The discussion in this presentation will revolve around a concrete example:

a method for the distinction between Staph. aureus subtypes 

(Type R versus Type S).
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MALDI-TOF/AI method and dataset

• The method being validated consists of two broad steps:

– Obtaining a full-scan spectrum (e.g. MALDI-TOF)

– Artificial Intelligence (AI) algorithm for spectrum analysis

➢ The method will be referred to as MALDI-TOF/AI

• Data corresponding to 190 Staph. aureus isolates collected from diseased cattle were available for the 

validation of the method:

– 162 Type S isolates

– 28 Type R isolates

→ 380 MALDI_TOF duplicate (2018 and 2019) Staph. aureus spectra.
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Validation of qualitative methods

• At the moment, no procedure has been set forth in an international standard or guideline for the validation 

of a qualitative method such as MALDI-TOF/AI.

• In the ISO 16140 series (validation of methods in food microbiology), the validation of qualitative methods 

is addressed – however, the question is not whether a sample can be assigned to a particular class but 

whether detection has taken place.

• Nonetheless, traditional performance characteristics for qualitative methods are – at least on the face of it 

– perfectly applicable to MALDI-TOF/AI.

→ first and foremost, sensitivity and specificity.



Performance characteristics and criteria for non-targeted methods www.quodata.de

Eurachem 2019, Tartu, Estonia 8

Validation of qualitative methods

The question is: how reliable is the 

characterization of method 

performance? 

In other words: how many samples are required in order 

to ensure a reliable characterization?
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Validation of qualitative methods

• Take a random sample of 10 isolates for each class.

• What can be concluded if all isolates are correctly 

identified?

• False positive rate (FPR) is calculated as 0 %.

• However, the upper limit of the 95 % confidence interval 

for FPR  is around 26 % (binomial distribution).
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• Take a random sample of 20 isolates for each class.

• What can be concluded if all isolates are correctly 

identified?

• False positive rate (FPR) is calculated as 0 %.

• However, the upper limit of the 95 % confidence interval 

for FPR  is around 14 % (binomial distribution).

Validation of qualitative methods
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Validation of qualitative methods

• The last two slides show that, unless the sample size is large enough, the estimates of performance 

characteristics (such as False Positive Rate) have unacceptably large confidence intervals.

• One consequence could be: After a successful validation study, the performance of the method is 

characterized in terms of FPR = 0 %. However, the true FPR lies e.g. around 20 %.

• If it is not possible to increase the sample size (say, to 50 samples), turn to another approach:

→ method characterization in terms of the underlying quantitative values1

1For a discussion of qualitative results and underlying (or “latent”) quantitative variables, see the following publications:

Uhlig et al. (2011) Can the usual validation standard series for quantitative methods, ISO 5725, be also applied for qualitative methods? 

Accreditation and Quality Assurance

Uhlig et al. (2013) A new profile likelihood confidence interval for the mean probability of detection in collaborative studies of binary test 

methods. Accreditation and Quality Assurance
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Performance characterization on the basis of classification scores

The output of many common AI methods such as

– principal component analysis (PCA)

– nonlinear iterative partial least squares (NIPALS)

– logistic regression

– random forests

– artificial neural networks (ANN)

– support vector machines (SVM)

can be transformed in such a way as to obtain 

quantitative results 

which often follow a normal distribution

These (hopefully normally-distributed) 

quantitative results will be called 

classification scores
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Performance characterization on the basis of classification scores

The classification result often involves the application of a decision rule.

This decision rule typically involves comparison to a cut-off.

Decision rules

Decision rule – comparison to a cut-off:

If

Classification score ≥ Cut-off

then the corresponding sample 

is assigned to Class A

Otherwise

it is assigned to Class NOT A
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Performance characterization on the basis of classification scores

In the following, 

the characterization and assessment

of the performance of MALDI-TOF/AI 

on the basis of classification scores 

will be illustrated with the Staph. Aureus data.
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Performance characterization on the basis of classification scores

Youden plot of standardized classification scores

Type S Type R
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Performance characterization on the basis of classification scores

Type S Type R

Mean value -1 1

Repeatability SD 0.26 -

Time SD 0.17 -

Intermediate SD 0.31 0.31

Population SD 0.50 0.34

Classification SD 0.59 0.46

Type S Type R
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Performance characterization on the basis of classification scores

A cut-off level of 0 ensures that 

nearly all Type R spectra are 

identified.
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Performance characterization on the basis of classification scores

The false positive rate is quite low:
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Performance assessment on the basis of classification scores

• A criterion for the classification SD ensuring acceptable false positive and false negative rates can be 
formulated as follows:

𝜎𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛, 𝑇𝑦𝑝𝑒 𝑆 + 𝜎𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛, 𝑇𝑦𝑝𝑒 𝑅 ≤ 1

• If this criterion is met, then it will always be possible to specify a cut-off such that both false positive and 
false negative rates are less than 5 %.

• Consider the case that both classification SD values are 0.5.

Assuming a normal distribution, we then have:

– 95 % of Type S classification scores will lie below −1 + 1.64 ∙ 0.5 = −0.18

– 95 % of Type R classification scores will lie above 1 − 1.64 ∙ 0.5 = 0.18

A performance criterion for the classification SD



Performance characteristics and criteria for non-targeted methods www.quodata.de

Eurachem 2019, Tartu, Estonia 20

Population heterogeneity

• If none of the isolates from subpopulation 2 are represented in the validation study

→ the FPR will be much larger than the value calculated in the validation study.

• This may constitute an unacceptable risk.

• It must be emphasized that this risk depends on:

– The numbers of isolates for each class

– The representativeness of the isolates included in the validation study
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Conclusions

• Even though methods such as MALDI-TOF/AI are qualitative, it is usually possible to base the 

characterization and assessment of method performance on normally distributed classification scores. 

• Doing so allows a more reliable characterization of method performance. For instance, the uncertainty in 

the estimate of FPR can be quite large if the evaluation is based on the qualitative outcomes.

• In particular, the characterization of method performance can be conducted in terms of precision 

parameters which – upon prior standardization of the classification scores – are easily compared and 

interpreted. It is thus possible to identify the main sources of random error (intermediate, repeatability, 

etc.).

• A criterion for the assessment of method performance was formulated in terms of the total precision 

(classification SD) estimates.
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Thanks for your attention!

uhlig@quodata.de

carsten.uhlig@akees.com 

manfred.stoyke@bvl.bund.de


