

Creating Reliable Data – a Challenge for Non-target Screening

Juliane Hollender^{1,2}, Karin Kiefer^{1,2}, Martin Krauss³, Jennifer Schollée¹, Emma Schymanski^{1,4}, Heinz Singer¹, Jaroslav Slobodnik⁵, Nikolaos Thomaidis⁶

¹Eawag, Swiss Federal Institute of Aquatic Science and Technology, Switzerland ^{2*}Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, ³UFZ, Helmholtz Centre for Environmental Research, Germany,⁴Luxembourg Centre for Systems Biomedicine (LCSB), Univ. of Luxembourg, ⁵Environmental Institute, Slovakia, ⁶Univ. of Athens, Greece

Juliane.Hollender@eawag.ch

Non-target screening is in daily use to mange chemicals at eawag.... the International Rhine monitoring station

Departement für Wirtschaft, Soziales und Umwelt des Kantons Basel-Stadt

Amt für Umwelt und Energie

http://www.eawag.ch/en/department/uchem/software/

Ruff et al., Aqua & Gas 2013, 5: 16-25

Daily non-target screening of the Rhine River

Prioritization using time profiles

Previously unknown chemicals detected due to "stand-out" patterns

▶ 10 major spills of non-target compounds in 2014 with > 25 tons of load

Hollender et al, Env. Sci. Technol. 2017, 51: 11505-11512

Data of the Rhine monitoring station

Experiences/tools of the NORMAN network

Challenges

- Suspect lists
- Quality control
- False positives versus false negatives
- In-source fragmentation
- Identification confidence
- Semi-quantification without standard

Conclusion & points for the discussion

Example Monitoring of Swiss groundwater

NORMAN network

> 70 organisations

academia, govermental organisations, research centers, industry

The mission of the NORMAN network is to:

• Exchange of information and collection of data on emerging environmental substances

NORMAN

substances

- Validation and harmonisation of monitoring tools
- Bottom up activities
- Science to policy interface

8 working groups, one on NTS with > 30 participating organizations

https://www.norman-network.net/?q=node/252

Network of reference laboratories, research centres and related

organisations for monitoring of emerging environmental

Cross-Working Group Activity Non-target Screening (NTS)

Non-target screening techniques for environmental monitoring

Comparison & harmonization of NTS methods in Europe

Collaborative trials using LC/GC-HRMS/MS: on water (Schymanski et al. ABC, 2015) and dust (Rostkowski et al, ABC, 2019), in 2019 planned for biota and passive samplers

Databases & Tools

- Home for MassBank, Norman Suspect Lists Exchange, Digital Sample Freezing platform (Alygizakis et al, TrAc 2019)
- Retention time index (Aalizadeh, J. Chem Inf Mod 2016 & J Haz Mat 2019)
- NormaNews exchange (Alygizakis et al, ES&T 2018)

Communication

- NTS group meetings
- NTS workshops / training courses (e.g. CH 2014, N 2017)
- NTS workshop for regulators in Brussels, 2018

NORMAN databases: Suspect List Exchange

- https://www.norman-network.com/?q=suspect-list-exchange
- 53 lists available ... specialist collections to market lists
 - Integrated in NORMAN Databases & CompTox Chemistry Dashboard
 - 1200 27 < 1000 entries 1000 80000 686 26 > 1000 entries 800 70000 600 8 240 340 340 \$18 50308 60000 400 ⁴⁰⁰⁵3 200 50000 40000 Antibiotics WRI GCHRMS NORNAND_{ri} HSMORE Statin Mycototi Wh Sie 30000 1289 20000 5466 571 52 465 248 056 304 605 35 586 1205 983 ر ين ي 256 429 622 0201 1030 186 223 123 1254 10000 KEMI WIN SUS PEAS NTROUZO . mined neuro Phytotokins NORMANCT25 Indoor CT26 Solutions MLOS KEMI Marker Swisspharma EPA Consprod CCS Compend Uod Jageets OFCDPFAS REACH 201> PFASTrier French List WRINSO MassBankEU KENII PEAS EU Cosmetics CPPDBBB (Plastics) mecloud STOFF. IDENT EI UBA SUIF Solutions Tps KUNP Sierbsz SusDat Ľ.

Jgl

National and Kapodistrian UNIVERSITY OF ATHENS

Retention Time Indices for RPLC-(+)ESI-HRMS

y = 76.379x - 99.912

 $R^2 = 1$

Quantitative structure retention relationship models for RTI system using chemical structure information

15

Training				Test			
	R2	RMSE	F		R2	RMSE	F
MLR	0.835	92.575	1515.130		0.870	83.184	426.416
SVM	0.861	84.869	1838.745		0.880	80.029	467.038

1200

1000

800

600

400

Retention time Index

$RTI = \frac{(RTx - RTmin)}{(RTx - RTmin)} * 1000$				
(RTmax – RTmin)				
Calibrants	RT (Acclaim C18)	RTI		
Guanylurea	1.31	1.00		
Amitrole	1.39	6.11		
Histamine	1.58	20.63		
Chlormequat	1.67	27.50		
Methamidophos	2.76	110.77		
Vancomycin	3.26	148.97		
Cefoperazone	4.36	233.00		
Trichlorfon	5.23	299.47		
Butocarboxim	6.07	363.64		
Dichlorvos	7	434.68		
Tylosin	7.88	501.91		
ТСМТВ	9.25	606.57		
rifaximin	10.06	668.45		
Spinosad A	11.34	766.23		
Emamectin B1a	12.4	847.21		
AvermectinB1a	13.64	941.94		
Nigericin	13.94	964.86		
Ivermectin B1a	14.4	1000.00		

Aalizadeh et al., J. Chem Inf Mod 2016 & J Haz Mat 2019

Online Platform to Calculate Experimental and Predicted Retention Time Indices

Development and Prediction of Retention Time Indices for LC-HRMS (version 2.0.0)

National and Kapodistrian UNIVERSITY OF ATHENS

Select the target ESI:

+ESI

O -ESI

- Select the RTI versus tR calibration mode:
- Prediction limits

Auto-calibrate

Manual

Upload RTI calibrants data ...

Calibrants pos UOA.csv Browse... Upload complete

Defalut max. file size 1MB (*.csv file)

Click here to build the calibration curve...

Click here to restart the current session...

III Trace Analysis & Mass Spectrometry Group

III NORMAN Suspect list Exchange website

Retention About	Time Indices for Calibrants	LC-HRMS (version 2.0 Single compound	0.0): Batch mode	Comparison of Experimental RTIs	Chemical Curation	NORMAN network	FAQ
Select t • OTrA Cher Enter th [O-][N	he uncertainity AMS mical space bour he SMILES of a I+](=O)NC/1=N/0	measurement: ndary compund here: CCN\1Cc2cnc(Cl)cc2		0 \\\\			
Enter th	ne tR for specifi	c ESI mode					
4.2							
Canonic InChIKe Experim The ESI	eal SMILES: O=[i ey: YWTYJOPNN eental tR: 4.2 I selected: +ESI	N+]([O-])NC1=NCCN10 IQFBPC-UHFFFAOYS	CC2=CN=C(Cl)C= A-N	C2			
	Estimate RTI &	its uncertainty					
Status:	Processed						
Experir Predict	mental RTI: 22 ed RTI: 250.83	0.88 3					
Experir Predict	mental tR: 4.2 red tR: 4.59 mi	min n					
Uncert	ainty: Exp. & P	red. tR are accepted	d for this candid	ate (box1)			
RTI vs	tR calibration	curve: RTI= 76.3788	3 *(tR) -99.9116	>>> (R^2= 1)			

▲ Save the prediction results...

Open access mass spectra libraries

MassBank.eu

1dl

 European NORMAN MassBank: currently ~53'000 spectra of ~16'000 compounds from 15 main instrument types and 40 institutions

MoNa: MassBank of North America:

> 200'000 mass spectra including in silico spectra & European MassBank

 mzCloud - HighChem: 17'000 compounds, highly curated, mostly Orbitrap

MassBank enables storage of tentative MSMS spectra

MassBank Record: ET201801

PRZ M573; LC-ESI-QFT; MS2; CE: 10; R=35000; [M+H]+

Home | Search | Record Index | Data Privacy | Imprint | MassBank ID:

glutathione

ACCESSION: ET201801

Mass Spectrum

RECORD_TITLE: PRZ_M573; LC-ESI-QFT; MS2; CE: 10; R=35000; [M+H]+ DATE: 2016.03.01 AUTHORS: , A. Roesch, E. Schymanski, J. Hollender, Department of Environmental Chemistry, Eawag LICENSE: <u>CC BY</u> COPYRIGHT: Copyright (C) 2015 Eawag, Duebendorf, Switzerland PUBLICATION: Rösch, A.; Anliker, S.; Hollender, J. How Biotransformation Influences Toxicokinetics of Azole Fungicides in COMMENT CONFIDENCE Tentative identification only (Level 3) COMMENT: INTERNAL_ID 2018

Go

Rösch et al., ES&T 2016

NormaNews: Sharing of emerging contaminants Retrospective screening of emerging suspects

Google Maps

Map images ©

eawag aquatic research 8000

Alygizakis et al. 2018 ES&T & https://comptox.epa.gov/dashboard/chemical lists/normanews

Digital Sample Freezing Platform – DSFP - A digital specimen bank of georeferenced HRMS data

NORMAN Digital Sample Freezing Platform Results NORMAN-ECHA

Screening of REACH compounds in samples from the Black Sea

eawag

INS

TITUT

aquatic research

Interactive heatmap available at http://norman-data.eu/NORMAN-REACH, Algyzakis et al., TrAC 2019

NORMAN Workshop for regulators: 25.10.2018, Brussels

How can non-target screening techniques support environmental monitoring and chemicals management?

- NTS can improve the identification of problematic substances and support regulatory processes in environmental and chemical **legislation** (e.g. WFD, the Marine Strategy Framework Directive, REACH)
- NTS can be a first screening step in the exposure assessment chain but does not replace target monitoring.
- Harmonized NTS protocols and minimum quality requirements should ٠ be established.
- New protocols / infrastructures are needed for efficient NTS data management, evaluation and sharing.
- Training would be beneficial to make NTS more widely accessible.
- Synergies between NTS and effect-based methods should be strengthened

Hollender et al., submitted to Env. Sci. Europe

- > 80 participants from
- Ministries, agencies
- **Regulatory institutes**
- **Research** institutes
- Industry

Sweder

Poland

Greece

Academics

responsible for

- Environmental/chemical legislation 0
- Food/drinking water safety Ο
- Human biomonitoring Ο

• Key input:

- experience of NORMAN members from trials etc.
- Different approaches for different regulatory questions where NTS can help (monitoring, prioritization,...)
- Guidance of German Water Chemistry Society on Suspect and Non-target screening in water analysis, draft
- Important topics: Number & type of blanks, Replicate samples/ replicate analyses,
 Compound domains covered vs. LC/GC & MS method setup, data dependent vs. data independent acquisition
- Presentation of draft version at the SWEMSA 2019 workshop (TU Munich, 21-23/10/19)
- Discussion on general assembly end of November in Milano
- Publish in 2020 with open access in a peer-reviewed journal

Suspect screening of overlooked pesticide TPs in Swiss groundwater

- 31 groundwater wells with intensive agriculture
- (Swiss national monitoring sites)

Workflow

- Enrichment: vacuum evaporation
- Analysis: RP-HPLC-ESI-HRMS/MS
- Automated screening for exact mass
- Prioritization of suspect hits
- Confirmation with reference standards

Smart Suspect Screening of pesticide transformation products in groundwater

*~1000 pesticide TPs, **ChviPath** from European pesticide registration (Latino et al. ESPI 2017) ° i.a. PPBD, Lewis et al. HERA 2016, Reemtsma et al., Wat Res 2013

- Appropriate suspect list
- > Appropriate method for compounds on suspect list

95%: similar polarity as targets 99% contain N, O, S atom

Challenges to achieve reliability – quality control

Quality control is necessary for instrumental analysis, but also data processing!

- Perform QC samples in each batch of samples (e.g., composite samples of each matrix, spiked samples, standard mixtures) and a sufficient number of sample processing and instrument blanks
- Use internal standards (spiked standards) for QC of analytical performance, but also of peak detection, sample alignment, mass accuracy.
- Take the time to adjust the peak detection settings to your data. Automatic parameter optimization is available in some workflows (e.g. XCMS, EnviMass).

Example: aim to not overlook TPs with low ionization efficiency

Validation of workflow

(peak picking, Rt alignment, isotopologues grouping, background substraction, suspect screening, CD 2.1 Thermo) **with >200 internal standards**

- 97% of internal standards detected
- ▶ but 9300 suspects detected
- ► filtering of noise/background (90%) => 686 hits
- ► further filtering needed

Filtering of data: in silico fragmentation with MetFrag

- Compare against other databases
- Check also for in-source fragmentation

Use of meta information improves identification success

$$Score_{Final} = \omega_{Frag} * score_{Frag} + \omega_{RT} * score_{RT} + \omega_{ref} * score_{ref} + \dots$$

Ruttkies et al. *J. Cheminf.*, 2016, Ruttkies et al., ABC 2019

Clear chemical identifiers necessary

McEachran et al. 2018, DOI: 10.1186/s13321-018-0299-2; Schymanski & Williams, 2017 ES&T DOI: 10.1021/acs.est.7b01908

Schymanski, Jeon, Gulde, Fenner, Ruff, Singer & Hollender (2014) ES&T, DOI: 10.1021/es5002105

19 Confirmed (Level 1)	 3 chlorothalonil TPs 1 cycloxydim TP 1 dimethachlor TP 1 fipronil TP 2 fluxapyroxad/bixafen TPs 1 fludioxonil TP 1 fludioxonil TP 1 metalaxyl TP 2 metolachlor TPs 2 nicosulfuron TPs 1 pinoxaden TP 4 terbuthylazine TPs
2 Probable (Level 2)	1 chlorotoluron TP 1 fipronil TP
3 Tentative (Level 3)	• 2 chlorothalonil TPs • 2 cymoxanil TPs
9 Rejected	• 9 TPs

Kiefer et al., submitted

(Semi) Quantification without standards

eawag aquatic research 8000

- **Suspected structure** with structural similar compounds, e.g. TPs with parent compound
 - Quantitative structure response relationship (e.g.Tanimoto coefficient)

Unknown structure

- Concentration range based on standards with different response ratios (Hollender Wat Res X 2018)
- Average response ratio of standards at similar retention time

- Instruments & tools are available, application in a clever way is important to successfully and reliably identify new compounds
- Optimization of acquisition and data processing is key
- Meta data are very important for successful identification
- Sharing of spectra, data, standards, experiences etc. is useful (NORMAN network)
- > Which kind of quality control samples (composites, replicates,...) and how often?
- How to optimize identification workflow?
- How to select smart suspect lists?
- What kind of meta information are most useful? Retention time, collision cross section in ion mobility, number of references, exposure index,...?
- > What are relevant differences in NTS for different samples (environment, food, human)?
- > How to improve communication of identification confidence? DDA or DIA spectra acquisition?
- > How to improve data sharing of spectra, suspect lists, etc?

Acknowledgements

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Bundesamt für Umwelt BAFU

- Cantonal labs, Federal Institute of Metrology for groundwater sampling
- Syngenta, BASF, Dupont, Bayer for reference standards
- Steffen Ruppe, Dorit Griesshaber, Ingrid Langlois, Jan Mazacek, AUE Basel-City
- Tobias Schulze, UFZ
- Reza, Aalizadeh, University of Athens
- Nikiforos Alygizakis, Jaroslav Slobodnik, Environmental Institute
- Saer Samanipour, Kevin Thomas, NIVA
- Christoph Ruttkes, Steffen Neumann, IPB Halle

NIV

HELMHOLTZ | CENTRE FOR | ENVIRONMENTA | RESEARCH - UF

National and Kapodistriar UNIVERSITY OF ATHENS

Non-Target Analysis for Environmental Assessment 26–30 May 2020 | Durham, NC, USA

SETAC North America Focused Topic Meeting

