

Throughput and coverage in metabolomics

Michaela Schwaiger, Harald Schoeny, Yasin El Abiead, Mate Rusz, Luis Galvez, Gerrit Hermann, Evelyn Rampler, Gunda Koellensperger

Mass spectrometry and omics-type analysis

Omics-type analysis envisions the comprehensive identification and quantification of a complete compound class (or biological complement) within one or few analytical runs

Metabolite coverage, selectivity and analytical throughput

Anion exchange –high resolution MS Reliability of putatively annotated compounds (level 2= bv MS2 spectra)

Non targeted analysis of cancer cell extracts (preparation of 10⁶ SW480 cells) by MS2 measurement and mzCloud search.

Comparison with standards revealed a number of identified false positives due to in-source fragmentation and due to isomers. Isomeric interference leads to features with more than one proposed structure in case the MS2 spectrum is not unique for one isomer.

M. Schwaiger et al., Anal Chem, 2017

Molecule

Divide and conquer

- Definition of sub-omes metabolome and lipidome based on analytical strategies
- Definition of distinct analytical tasks: Targeted absolute versus non-targeted analysis
- Concept of merging workflows
 Merging quantification and identification in HR-MS
 Merging lipidomics/metabolomics

Analytical approaches for lipids

Shotgun lipidomics

LC-MS-based lipidomics Hydrophilic Interaction (HILIC) R

All analytes in one spectra Fast, ion suppression Lipid class specific quantification Separated after head group Fast, only polar lipids Lipid class specific quantification Separated after chain composition Long run time Identification/ Compound specific quantification

Reversed phase (RP)

Divide and conquer

- Definition of sub-omes metabolome and lipidome based on analytical strategies
- Definition of distinct analytical tasks: Targeted absolute versus non-targeted analysis

Concept of merging workflows

- Merging targeted analysis (absolute quantification) and non-targeted analysis (identification/relative quantification) in one run
- Merging lipidomics/metabolomics

Internal standards in metabolomics

Isotopically enriched ^{U13}C *Pichia pastoris*

Fed batch cultivation with U¹³C glucose

Nucleotides, nucleosides and nucleobases (Neubauer et al. 2012, Schwaiger et.al, 2017); Organic acids (Klavins et al., 2014); Amino acids (Guerrasio et al. 2014, Hermann et al., 2017); Sugar phosphates (Troyer et al. 2017, Klavins et al.2014, Chu et al. 2014); Coenzyme A, Acyl coenzyme A thioester (Neubauer et al. 2015); Cofactors (Ortmayr et al. 2014); Sulfur metabolism (Troyer et al. 2012, Hermann et al. 2013, Ortmayr et al. 2015)

Accurate quantification by Isotope dilution

Shown by

• Laboratory intercomparison

Klavins, K et al., (2013) Analytical and Bioanalytical Chemistry, 405 (15), 5159.

• Crossvalidation using different platforms

K. Ortmayr et al., (2015) Analyst 140, 3465

HILIC-QE-HF-MS

HILIC-MS/MS

Metabolites library in Pichia pastoris

Number of metabolites and their classes as found

(a) up to date in ¹³C-enriched *Pichia pastoris*

(b) In HCT116 cells extract by HILIC-Orbitrap-MS

(c) in ¹³C-enriched *Pichia pastoris* added to HCT116 cells

Anion-exchange chromatography coupled to high-resolution mass spectrometry: A powerful tool for merging targeted and non-targeted metabolomics

Michaela Schwaiger, Evelyn Rampler, Gerrit Hermann, Walter Miklos, Walter Berger, Gunda Koellensperger, *Analytical Chemistry*, **2017**, 89, 7667–7674

Merging targeted with non-targeted analysis by high-resolution mass spectrometry

For absolute quantification

- Standards
 - Nucleotides, sugar phosphates and organic acids standards
 - Calibration range: 0.5 nM 50 μM

- Species specific internal standardization
 - Fully ¹³C labeled extract of *Pichia pastoris*
 - Added to all calibration standards and samples

Anion exchange chromatography

Application in a cancer cell study

- Sensitive vs. resistant cancer cell line
- 1 x 10⁶ cells seeded in 6-well plates
- 5 biological replicates
- Quantified with yeast based fully ¹³C labeled internal standard

Without ISTD

Resistant

Pool

Sensitive

25

20 15

5

PC 2 (15.0%) 10

Schwaiger et al. Analytical Chemistry, 2017, 89, 7667–7674

Divide and conquer

- Definition of sub-omes metabolome and lipidome based on analytical strategies
- Definition of distinct analytical tasks: Targeted absolute versus non-targeted analysis

Concept of merging workflows

- Merging quantification and identification in HR-MS
- Merging lipidomics/metabolomics

On-line combination of chromatographic separations

Applications in metabolomics

Parallel column RPLC/HILIC K. Klavins, H. Drexler, S. Hann, G. Koellensperger, (2014) Anal. Chem. 86, 4145

K. Ortmayr, S. Hann, G. Koellensperger, (2015) Analyst 140, 3465

On-line combination of chromatographic separations

Throughput

Selectivity

Increasing coverage within the sub-omes

Metabolomics: Parallel column RPLC/HILIC

K. Klavins, H. Drexler, S. Hann, G. Koellensperger, (2014) Anal. Chem. 86, 4145

Metabolomics: Heart-cutting RP-PGC-LC

K. Ortmayr, S. Hann, G. Koellensperger, (2015) Analyst 140, 3465

Lipidomics: Heart-cutting RPLC-HILIC

E. Rampler, H. Schoeny, BM. Mitic, Y. El Abiead, M. Schwaiger, G. Koellensperger, (2018) Analyst, 143, 1250

Increasing coverage accross the sub-omes

Merging metabolomics and lipidomics into one analytical

run

Dual Extraction/dual injection/Parallel RPLC/HILIC

M. Schwaiger, G. Hermann, H. Schoeny, E. Rampler, Y. El Abizad, G. Koellensperger, (2018) Analyst, just accepted

Merging metabolomics and lipidomics

- On-line combination of chromatographic separations
- Dual injection of tailored extracts
- Analysis in one run
- Merging absolute/relative quantification and compound identification for lipids and metabolites

Sub-omes require dedicated sample preparation

Metabolites

- Extraction by polar solvents
 - Methanol
 - Ethanol
 - Acetonitrile
 - Water

Lipids

- Liquid/liquid extraction
 - Methyl *tert*-butyl ether extraction (MTBE)
 - Folch: chloroform/methanol 2:1
- Solid-phase extraction

Approaches to allow multi-omics analysis: e.g. C. Coman et al. SIMPLEX: A Combinatorial Multimolecular Omics Approach for Systems Biology. *Mol. Cell. Proteomics* **2016**

Sample preparation of human plasma

Extraction with methanol

Biphasic MTBE extraction

LC-MS Setup for metabolomics and lipidomics Injection of two different extracts onto two different columns

Separation of small polar metabolites

Separation of unpolar lipids

Experimental procedure - timeline

	HILIC (Metabolites)	RP (Lipids)
Column	ZIC-pHILIC, 150 x 2.1 mm, 5 μm	Acquity HSS T3, 2.1 mm x 150 mm, 1.8 μ m
Mobile phase	A: 90% 10 mM NH₄HCO₃, pH 9.2/ 10% ACN B: 100% ACN	A: ACN/H ₂ O (3:2, v/v), 0.1% FA + 10 mM NH ₄ HCOO B: IPA/ACN (9:1, v/v). 0.1% FA + 10 mM NH ₄ HCOO
Flow rate	0.300 mL min ⁻¹ (10-27 min 0.050 mL min ⁻¹)	0.250 mL min ⁻¹
Injection vol.	5 μL	5 μL
Column temp.	40 °C	40 °C
MS	Q Exactive HF	
Full MS	120,000 resolution, positive/negative ESI with fast polarity switching	
Mass range	65 - 900	200 - 2000
ddMS2 resolution	30,000	
ТорN	15	10

Automated exclusion list generation

Combining HILIC (alkaline) and RP (acidic)

Metabolites in frozen human plasma separated with the new dual setup

Analytical figures of merit: targeted metabolomics

- Multi-component standard containing > 100 metabolites
- Excellent intermediate repeatability: more than half of the compounds < 10% area RSD and < 0.5% retention time RSD over 45 hours
- Limits of detection: 10 50 nM for organic acids, 10 100 nM for amino acids and nucleotides
- Linear calibration curves over 3 4 orders of magnitude using ¹³C labeled yeast extract as internal standard
- Majority of metabolites detected in both positive and negative mode

Absolute quantification

Merging absolute quantification and untargeted analysis

- High resolution data \rightarrow untargeted metabolomics
- MS2 spectra on > 50% of compounds
- > 100 metabolites were putatively annotated by mzCloud (Level 2 identification)

Sumner et al. (2007). Proposed minimum reporting standards for chemical analysis. Metabolomics : Official journal of the Metabolomic Society, 3(3), 211-221

Analytical figures of merit: targeted lipidomics

- Multi-component standard containing lipids from different classes
- Excellent intermediate repeatability: more than 2/3 of the compounds
 - < 10% area RSD and all compounds < 0.5% RT RSD over 45 hours
- Limits of detection: low nM range except for CEs (poor ionization), TGs (high background)
- Linear calibration curves over 3 4 orders of magnitude for many lipid classes

Lipid identifications in SRM 1950

→ Same number of identifications with DUAL setup compared to RP only

N=4 extraction replicates

Lipid identifications in SRM 1950

LILY-Lipidome Isotope Labeling of Yeast

Compound-specific lipid quantification ¹³C reference lipids produced in yeast

Lipidome Isotope Labeling of Yeast - LILY

A) Fermentation

Pichia pastoris

B) Cell disruption Glass beads

C) Lipid extraction Folch extraction

Data Analysis

Targeted Shotgun

Come Desired

D) Defined standards for MS [U ¹³C] Lipids

Lipid profiling by RPLC-MSn in *Pichia pastoris* yeast and SRM 1950 human plasma samples.

A. Number of lipid species per lipid class and presence in LILY yeast extract and human plasma samples. **B**. Comparison of individual lipid species present in both human plasma and ¹³C-labeled LILY lipid extract

E. Rampler, A. Criscuolo, M. Zeller, Y. El Abiead, H. Schoeny, G. Hermann, E. Sokol, K. Cook, D. A. Peake, B. Delanghe, G. Koellensperger, Analytical Chemistry 2018

Summary Metabolomics/lipidomics - a field of analytical development

With broader application of metabolomics/lipidomics there is an increasing unease about applied standards

Harmonization initiatives are essential

- Analytical Chemistry:
 - (Reference) materials
 - Validation strategies and standardized protocols
 - Streamlined/merged workflows to increase throughput

Acknowledgement

Thermo Fisher SCIENTIFIC

The world leader in serving science

aws austria wirtschaftsservice

GmbH

ISOtopic

