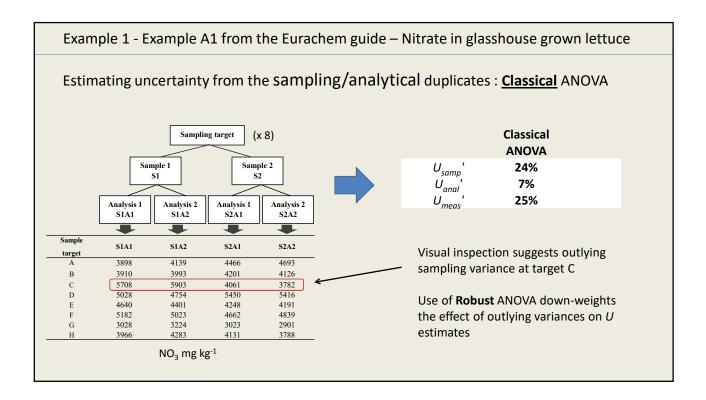
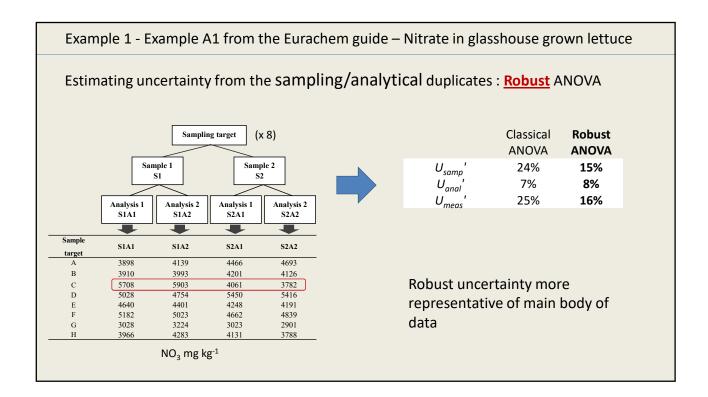
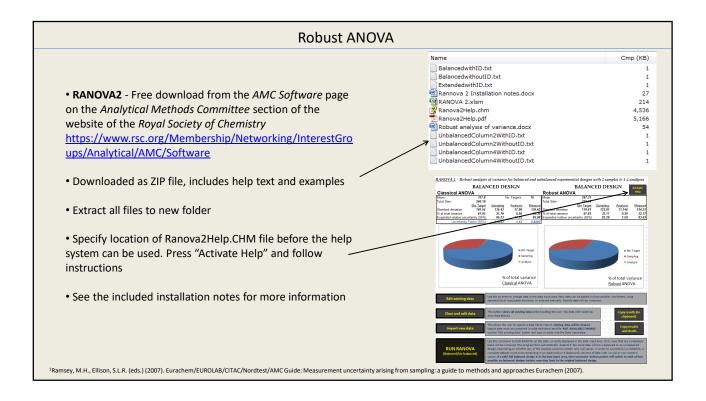
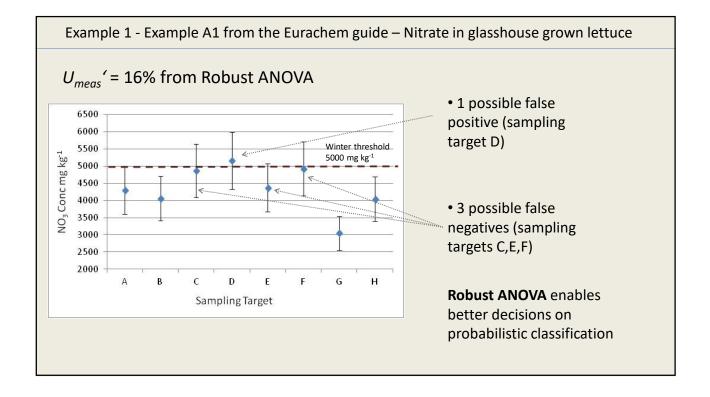
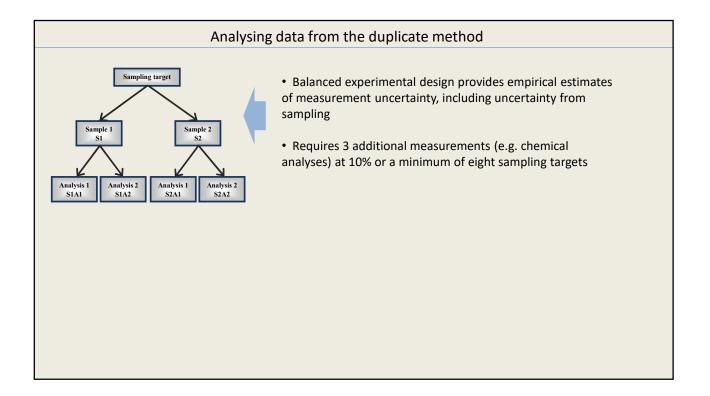

Overview	
 Example of using the balanced experimental design to estimate measurement uncertainty including uncertainty from sampling (example A1 from the Eurachem guide) 	
 Reducing the cost of uncertainty estimation using the unbalanced design 	
 Validation of robust ANOVA on the unbalanced design (theoretical) 	
4. Application of the unbalanced design to real data:1. Example A1 from Eurachem guide2. Example A2 from Eurachem guide	
5. Conclusions	

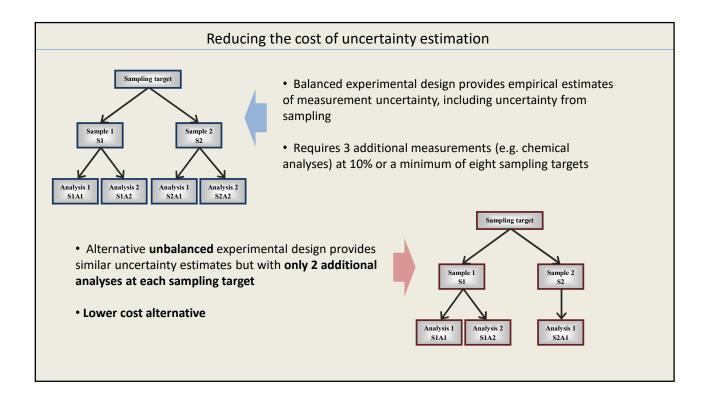


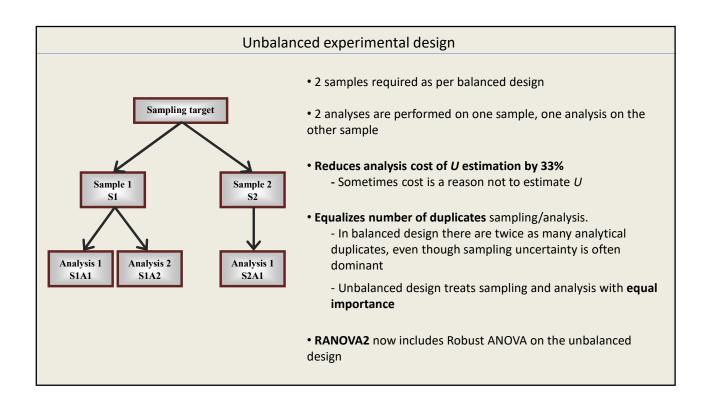


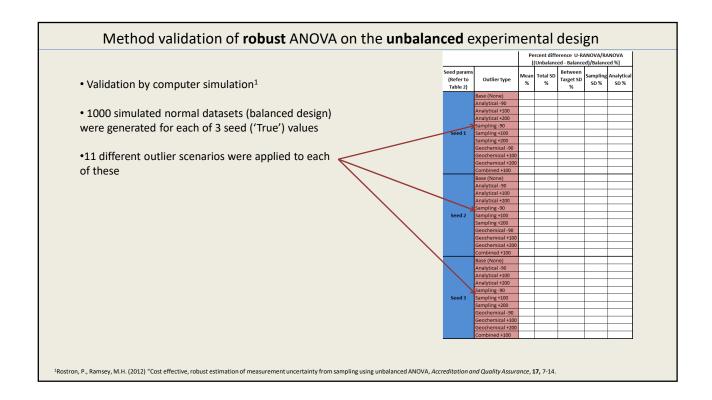


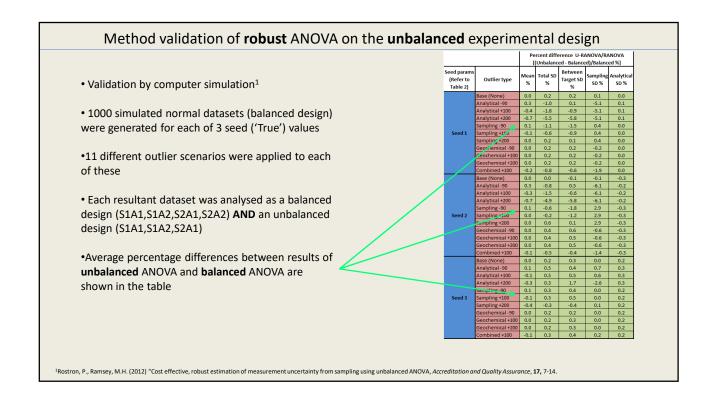


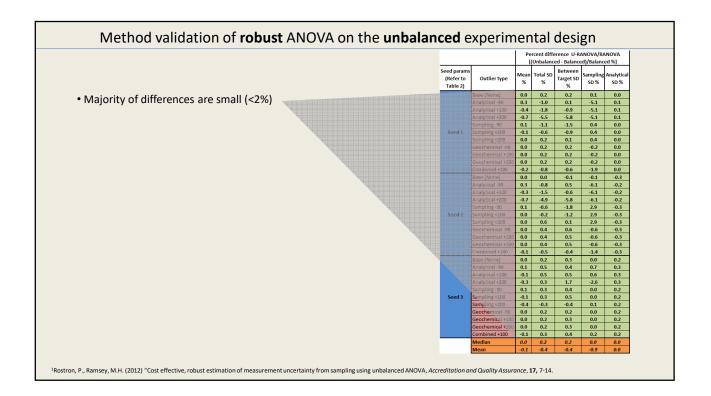


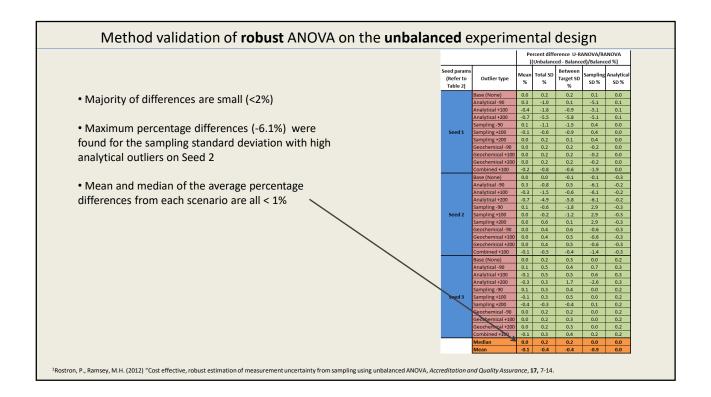


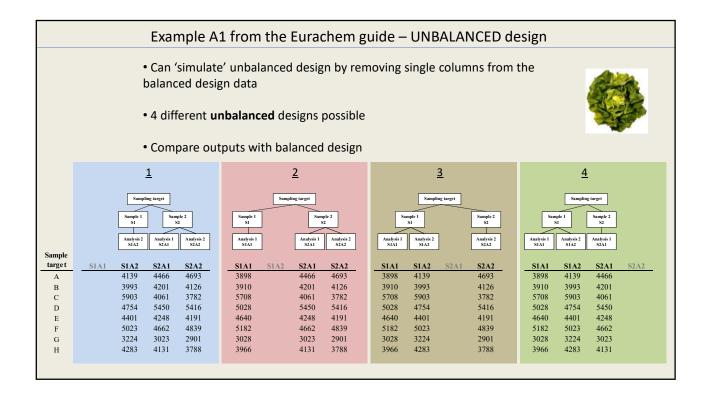

Robust ANOVA	4
 Robust ANOVA recommended when measurement data includes outlying values (<10%)¹ 	MS Excel – RANOVA2 <u>RANOVA2</u> - Robust analysis of variance for balanced and unbalanced experimental designs with 2 samples 6: 1-2 analyse BALANCED DESIGN BALANCED DESIGN Classical ANOVA 77.8 10 Targets 10 207.77
 In practice: Often a small proportion (i.e. <10%) of outlying values exist in the frequency distributions of the analytical, within-sample and between-sample variability¹ 	Tradi Seo 244.19 Tradi Seo T
• Robust ANOVA gives more reliable estimate of the variances of the <i>underlying</i> populations (See example in Appendix A1 of the Eurachem UfS guide ¹)	Classical ANOVA C
Computer intensive, iterative process	RUIN RANOVA (balanced/bb balanced) (balanced/bb balanced/bb balanc

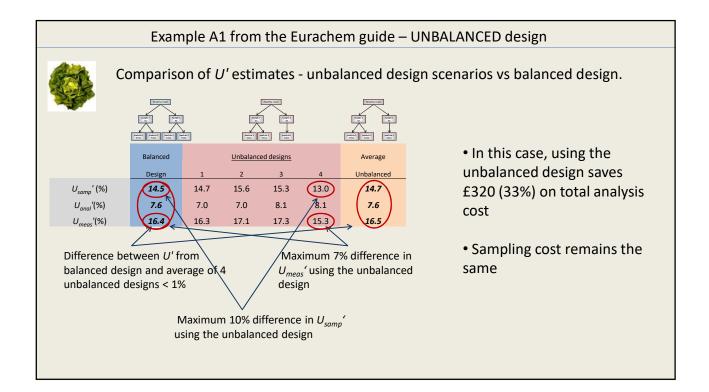


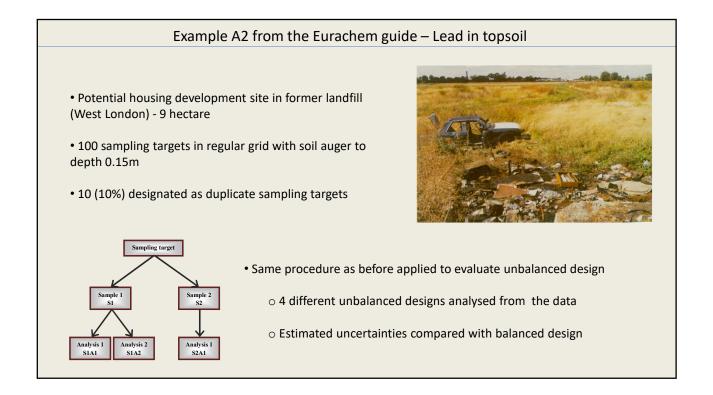


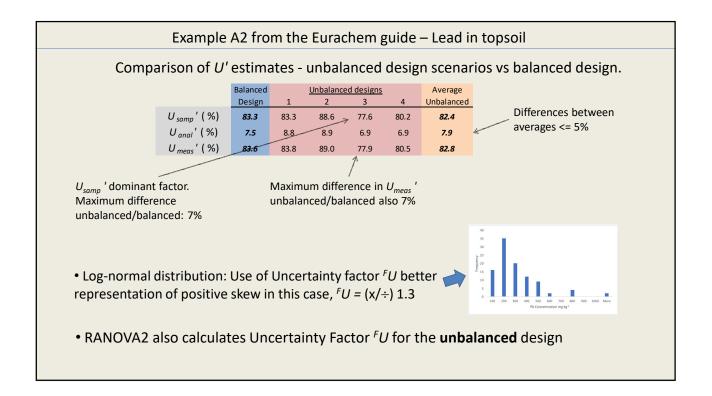

			1	Unbalance	ed - Balance	d)/Balanced	1%]
Validation by computer simulation ¹	Seed params (Refer to Table 2)	Outlier type	Mean %	Total SD %	Between Target SD %	Sampling A SD %	sD %
1000 simulated normal detects (balanced design)							
 1000 simulated normal datasets (balanced design) were generated for each of 3 seed ('True') values 							
vere generated for each of 5 seed (frac) values	Seed 1						
$\langle \rangle$							
	Seed 2						
	Seed 3						

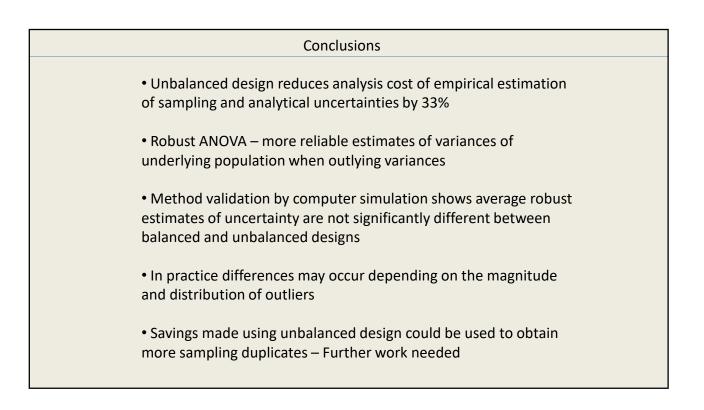

		Percent difference U-RANOVA/RANOV [(Unbalanced - Balanced)/Balanced %					
Validation by computer simulation ¹	Seed params (Refer to Table 2)	Outlier type	Mean %	Total SD %	Between Target SD %	Sampling SD %	Analytica SD %
		Base (None)					
		Analytical -90					
1000 simulated normal datasets (balanced design)		Analytical +100					
		Analytical +200					
vere generated for each of 3 seed ('True') values	// True') values Sampling 30 Sampling 30 sampling 30 Sampling 30 Sampling 30 re applied to each Geochemical 300 Geochemical 300 Geochemical 400 Geochemical 400 Geochemical 400 Jessel (None) Analytical 300 Geochemical 400 Jessel (None) Analytical 400 Geochemical 400 Jessel (None) Geochemical 400 <						
- , ,	Seed 1						
11 different outlier scenarios were applied to each							
II different outlier scenarios were applied to each							
Each resultant dataset was analysed as a balanced							
		Base (None)					
		Analytical -90					
Each resultant dataset was analysed as a balanced							
design (51.4.1.51.4.2.52.4.1.52.4.2.) AND an unhalanced							
design (S1A1,S1A2,S2A1,S2A2) AND an unbalanced	Seed 2						
design (S1A1,S1A2,S2A1)							
Jesigh (STAT, STAZ, SZAT)							
		Geochemical +200 Combined +100					
		Base (None)					
		Analytical -90					
		Analytical +100					
		Analytical +200					
		Sampling -90					
	Seed 3	Sampling +100					
		Sampling +200					
		Geochemical -90					
		Geochemical +100					
		Geochemical +200					
		Combined +100					


			Percent difference U-RANOVA/RANOVA [{Unbalanced - Balanced)/Balanced %]					
 Validation by computer simulation¹ 	Seed params (Refer to Table 2)	Outlier type	Mean %	Total SD %	Between Target SD %	Sampling SD %	Analytica SD %	
		Base (None)	0.0	0.2	0.2	0.1	0.0	
		Analytical -90	0.3	-1.0	0.1	-5.1	0.1	
 1000 simulated normal datasets (balanced design) 		Analytical +100	-0.4	-1.8	-0.9	-5.1	0.1	
· · · · · · · · · · · · · · · · · · ·		Analytical +200 Sampling -90	-0.7 0.1	-5.5	-5.8	-5.1	0.1	
were generated for each of 3 seed ('True') values	Seed 1	Sampling +100	-0.1	-0.6	-1.5	0.4	0.0	
		Sampling +200	0.0	0.2	0.1	0.4	0.0	
		Geochemical -90	0.0	0.2	0.2	-0.2	0.0	
 11 different outlier scenarios were applied to each 		Geochemical +100	0.0	0.2	0.2	-0.2	0.0	
		Geochemical +200	0.0	0.2	0.2	-0.2	0.0	
of these		Combined +100 Base (None)	-0.2	-0.8	-0.6	-1.9	-0.3	
		Analytical -90	0.3	-0.8	0.5	-6.1	-0.2	
Each resultant dataset was analysed as a balanced		Analytical +100	-0.3	-1.5	-0.6	-6.1	-0.2	
		Analytical +200	-0.7	-4.9	-5.8	-6.1	-0.2	
design (S1A1 S1A2 S2A1 S2A2) AND an unhalanced		Sampling -90	0.1	-0.6	-1.8	2.9	-0.3	
design (S1A1,S1A2,S2A1,S2A2) AND an unbalanced	Seed 2	Sampling +100	0.0	-0.2	-1.2	2.9	-0.3	
design (S1A1,S1A2,S2A1)		Sampling +200 Geochemical -90	0.0	0.6	0.1	2.9	-0.3	
		Geochemical +100	0.0	0.4	0.5	-0.6	-0.3	
		Geochemical +200	0.0	0.4	0.5	-0.6	-0.3	
•Average percentage differences between results of		Combined +100	-0.1	-0.5	-0.4	-1.4	-0.3	
		Base (None)	0.0	0.2	0.3	0.0	0.2	
unbalanced ANOVA and balanced ANOVA are		Analytical -90 Analytical +100	0.1	0.5	0.4	0.7	0.3	
al anna ta alca a chuir		Analytical +200	-0.3	0.3	1.7	-2.6	0.3	
shown in the table		Sampling -90	0.1	0.3	0.4	0.0	0.2	
	Seed 3	Sampling +100	-0.1	0.3	0.5	0.0	0.2	
u e une i i i i		Sampling +200	-0.4	-0.3	-0.4	0.1	0.2	
Median/Mean differences calculated		Geochemical -90	0.0	0.2	0.2	0.0	0.2	
		Geochemical +100 Geochemical +200	0.0	0.2	0.3	0.0	0.2	
	<u> </u>	Combined +100	-0.1	0.2	0.4	0.0	0.2	
		Median	0.0	0.2	0.2	0.0	0.0	
	-	Mean	-0.1	-0.4	-0.4	-0.9	0.0	




				e U-RANOVA/RANOVA alanced)/Balanced %]			
	Seed params (Refer to Table 2)	Outlier type	Mean %	Total SD %	Between Target SD %	Sampling SD %	Analytica SD %
		Base (None)	0.0	0.2	0.2	0.1	0.0
Majority of differences are small (<2%)		Analytical -90	0.3	-1.0	0.1	-5.1	0.1
		Analytical +100	-0.4	-1.8	-0.9	-5.1	0.1
		Analytical +200	-0.7	-5.5	-5.8	-5.1	0.1
• Maximum percentage differences (-6.1%) were found for the sampling standard deviation with high		Sampling -90	0.1	-1.1	-1.5	0.4	0.0
	Seed 1	Sampling +100	-0.1	-0.6	-0.9	0.4	0.0
		Sampling +200	0.0	0.2	0.1	0.4	0.0
		Geochemical -90	0.0	0.2	0.2	-0.2	0.0
inalytical outliers on Seed 2		Geochemical +100	0.0	0.2	0.2	-0.2	0.0
		Geochemical +200	0.0	0.2	0.2	-0.2	0.0
		Combined +100	-0.2	-0.8	-0.6	-1.9	0.0
		Base (None)	0.0	0.0	-0.1	-0.1	-0.3
		Analytical -90	0.3	-0.8	0.5	-6.1	-0.2
		Analytical +100	-0.3	-1.5	-0.6	-6.1	-0.2
	Sa Seed 2 Sa	Analytical +200	-0.7	-4.9	-5.8	-6.1	-0.2
		Sampling -90	0.1	-0.6	-1.8	2.9	-0.3
		Sampling +100	0.0	-0.2	-1.2	2.9	-0.3
		Sampling +200	0.0	0.6	0.1	2.9	-0.3
		Geochemical -90	0.0	0.4	0.6	-0.6	-0.3
		Geochemical +100	0.0	0.4	0.5	-0.6	-0.3
		Geochemical +200 Combined +100	0.0	-0.5	-0.4	-0.6	-0.3
			-0.1				
		Base (None)	0.0	0.2	0.3	0.0	0.2
		Analytical -90 Analytical +100	0.1 -0.1	0.5	0.4	0.7	0.3
		Analytical +100 Analytical +200	-0.1	0.5	0.5	-2.6	0.3
		Sampling -90	0.1	0.3	0.4	-2.0	0.3
	Seed 3	Sampling +100	-0.1	0.3	0.4	0.0	0.2
	seed a	Sampling +200	-0.1	-0.3	-0.4	0.0	0.2
		Geochemical -90	0.0	0.2	0.2	0.0	0.2
		Geochemical +100	0.0	0.2	0.2	0.0	0.2
		Geochemical +200	0.0	0.2	0.3	0.0	0.2
		Combined +100	-0.1	0.2	0.4	0.0	0.2
		Median	0.0	0.5	0.4	0.2	0.2
		Mean	-0.1	-0.4	-0.4	-0.9	0.0
		weath	-0.1	-0.4	-0.4	-0.9	0.0




		Percent difference U-RANOVA/RAN [(Unbalanced - Balanced)/Balanced						
	Seed params (Refer to Table 2)	Outlier type	Mean %	Total SD %	Between Target SD %	Sampling SD %	Analytica SD %	
 Majority of differences are small (<2%) 		Base (None)	0.0	0.2	0.2	0.1	0.0	
inajointy of uniferences are sinal (<270)		Analytical -90	0.3	-1.0	0.1	-5.1	0.1	
		Analytical +100 Analytical +200	-0.4 -0.7	-1.8	-0.9	-5.1	0.1	
Maximum noreantage differences (6 10/) were		Sampling -90	0.1	-1.1	-1.5	0.4	0.0	
 Maximum percentage differences (-6.1%) were 	Seed 1	Sampling +100	-0.1	-0.6	-0.9	0.4	0.0	
found for the sampling standard deviation with high		Sampling +200	0.0	0.2	0.1	0.4	0.0	
		Geochemical -90 Geochemical +100	0.0	0.2	0.2	-0.2	0.0	
analytical outliers on Seed 2		Geochemical +200	0.0	0.2	0.2	-0.2	0.0	
		Combined +100	-0.2	-0.8	-0.6	-1.9	0.0	
 Mean and median of the average percentage differences from each scenario are all < 1% 		Base (None)	0.0	0.0	-0.1	-0.1	-0.3	
	1	Analytical -90 Analytical +100	0.3	-0.8	-0.6	-6.1 -6.1	-0.2	
		Analytical +200	-0.7	-4.9	-5.8	-6.1	-0.2	
		Sampling -90	0.1	-0.6	-1.8	2.9	-0.3	
	Seed 2	Sampling +100	0.0	-0.2	-1.2	2.9	-0.3	
 Method validation for the unbalanced design 		Sampling +200 Geochemical -90	0.0	0.6	0.1	-0.6	-0.3	
6		Geochemical +100	0.0	0.4	0.5	-0.6	-0.3	
demonstrated. BUT validation was based on		Geochemical +200	0.0	0.4	0.5	-0.6	-0.3	
duplicate analysis of 100 sampling targets. Unlikely		Combined +100	-0.1 0.0	-0.5	-0.4	-1.4	-0.3	
		Base (None) Analytical -90	0.0	0.2	0.3	0.0	0.2	
n practice! High cost		Analytical +100	-0.1	0.5	0.5	0.6	0.3	
		Analytical +200	-0.3	0.3	1.7	-2.6	0.3	
	Seed 3	Sampling -90 Sampling +100	0.1	0.3	0.4	0.0	0.2	
 How does the unbalanced design perform (when 	seed 3	Sampling +200	-0.1	-0.3	-0.4	0.0	0.2	
compared to the balanced design) in real data		Geochemical -90	0.0	0.2	0.2	0.0	0.2	
compared to the balanced design) in real data		Geochemical +100	0.0	0.2	0.3	0.0	0.2	
scenarios?		Geochemical +200 Combined +100	0.0	0.2	0.3	0.0	0.2	
		Median	0.0	0.3	0.4	0.2	0.2	
		Mean	-0.1	-0.4	-0.4	-0.9	0.0	



