The way forward for Uncertainty from Sampling

Michael H Ramsey

School of Life Sciences, University of Sussex, Brighton, UK

Eurachem/Eurolab Workshop, Uncertainty from sampling and analysis for accredited laboratories November 2019, Berlin

University of Sussex

Overview

- New applications of existing UfS estimation methods
 - In situ at mm scale (PXRF), and μ m scale (SIMS) sensors in general
 - Passive Υ-ray Spec
 - On site briefly mentioned here
- Need to further develop methods for estimation of UfS
- Gaining benefits from knowing UfS
 - E.g. improving sampling to reduce UfS to achieve FFP
- External factors affecting take up of UfS estimation – Management of the whole measurement process
- Conclusions

UNIVERSITY Of Sussex

UfS esti	mation	of in s	situ 1	neasurements & FFP					
• Rano	lom component	of UfS calcula	ted using	RANOVA of duplicate measurements -					
	parameter	Ex situ	In situ						
		[Pb] mg kg ⁻¹							
	Robust mean	749	1045						
	Sanalytical	14	61	<i>In situ</i> Analysis gives higher U – but not dominant source					
	S _{sampling}	310	529 👞	Sampling is dominant sources of U (>99% in both cases)					
	S _{meas}	311	532 🖌	· · · · · · · · · · · · · · · · · · ·					
	U'	83%	102%						
- l	 Uncertainty Factor would probably have been better than U'- not around then 								
• One	 One <u>Benefit of knowing UfS is the ability to judge fitness-for-purpose</u>, described in:- 								
– (UfS Guide Section 16 of, applied here using Optimized Uncertainty method = OCLI 								
 OCLI method in <u>ISO 18400-104:2018</u>, Soil Quality – Sampling – Part 104: Strategies, Annex C 									
– i.e. was the sampling (and analysis) good enough?									
Taylor P D, Ramsey M H and Pott: situ and ex situ analysis of contar	s P.J. (2004) Balancing me ninated land. Environmen	asurement uncertainty a tal Science and Technolog	gainst financial b gy 38, 6824-683	university University of Sussex					

E (L) = C [1-
$$\Phi$$
 (ϵ_1 / s_{meas})] + D/s²_{meas}

E (L) – expectation of financial loss

 s_{meas} – measurement uncertainty

 Φ – standard normal cumulative distribution function

 $\epsilon 1 - \text{error limit} = | T - c |$

(T = threshold value, c = contaminant concentration)

D - combined optimal cost for sampling and analysis

C - consequence costs (e.g. potential losses resulting from misclassification)

	Cost per me	easurement (£)	Consequence co	st of misclassification
	L _{samp}	L _{anal}	C(remediation)	C(legal)
Ex situ (AAS)	10	10	42000	10000
In situ (PXRF)		13	10500	10000

Unce	rta	inty estir	nate	es for l	NBS2	8 at	mic	ron s	scale
	•	Use ANOVA to estir expressed U in unit - Unit widely used ir	nate Unco s of 'per r n isotopic ar	ertainty mil' $\% = 100$ nalysis for repeat	00 * s / xtability and f	neterogen	eity,		
		Summary of Uncerta	inty estima	ates for NBS28		Num			
			Total	dups	dups	pairs			
		Uncertainty 1s(‰)*	0.31	0.28	0.14 ^{<}	97			
	•	U _{anal} = Analytical re U _{samp} = between-fra - adds to u _{anal} - dominates t	peatabilit agments f _{Iyical} to give otal measu	y estimated f from Heterog total repeatat urement variar	from 'with eneity (U _t bility/U _{meas} nce (U _{samp} c	nin-dupl _{net}) quar of 0.31%	icate' = (atified as es 81%)	0.14‰ 5 0.28 ‰	
	-	Full measurement und between-lab variance	certainty e	stimate would	require bia	as agains	t matched	d CRMs &	
Ramsey MH and Wiedenb	oeck M. (2	2017) Geostandards and Geoanaly	ر tical Research،	42,1,5-24					University of Sussex

8

MOU23 Ditch this slide - just put key points elsewhere (conclusions?) Microsoft Office User, 07/11/2019

MOUIS

MOU13 This slide is general wish list - move later? Or combine with later lists? Microsoft Office User, 02/10/2019

External factors affecting take up of UfS estimation

- Awareness of UfS improve with 2019 UfS Guide etc.
- Regulatory and accreditation requirements to estimate UfS
 - $-\,$ improving with sampling in ISO/IEC 17025:2017 clause 7.6.1 to evaluate UfS $\,$
- Cost of estimating UfS
 - reduce cost of estimation with unbalanced or simple design
 - emphasise reduction in overall cost by avoiding adverse effects of UfS (e.g. loss of product)
- Including UfS in conformity assessment and compliance decisions
- - find better ways
 - e,g. Food sector currently excludes UfS
 - Assumes samples are 'representative', therefore UfS is 'zero'!
- Management of samplers/sampling process
 - need to integrate sampling into whole measurement process
 - Not administer sampling as a separate process
 - Educate samplers in the measurement process

University of Sussex

