

Outline

- 1. Frequentist and Bayesian uncertainty evaluations
- 2. Multivariate Bayesian conformity assessment
- 3. MS-Excel tool for defining acceptance limits
- 4. Application examples
- 5. Conclusion

rjsilva@fc.ul.pt

2

1. Frequentist and Bayesian uncertainty evaluations

The measurement uncertainty evaluation can be:

- Frequentist (classical)
- Bayesian

Bayesian evaluations use available prior information on the studied measurand (...) to improve the measurement result.

rjsilva@fc.ul.pt

1. Frequentist and Bayesian uncertainty evaluations

Bayesian reasoning example: Simple qualitative analysis example:

Pregnancy testing from fast kits: True positive results rate, *TP*: 98.5 % False positive results rate, *FP*: 0.8 %

A frequentist would say that tested woman has a 50 % probability of being pregnant, therefore, the probability of a positive result being correct, *P* is:

$$P = \frac{98.5\%}{98.5\% + 0.8\%} = 99.2\%$$

rjsilva@fc.ul.pt

1. Frequentist and Bayesian uncertainty evaluations

Bayesian reasoning example:TP: 98.5 %
FP: 0.8 %Simple qualitative analysis sample:FP: 0.8 %(...) however, a Bayesian would ask woman's age and take pregnancy prevalence
into account. For a 28 years old woman, since 16.2 % of woman are pregnant: $P = \frac{98.5 \% \cdot 16.2 \%}{98.5 \% \cdot 16.2 \% + (100\% - 16.2 \%)0.8 \%} = 96.0 \%$ For a 44 years old woman, since 1.9 % are pregnant: $P = \frac{98.5 \% \cdot 1.9 \%}{98.5 \% \cdot 1.9 \% + (100\% - 1.9 \%)0.8 \%} = 70.4 \%$ Pregnancy prevalence depends on the country. Since considered prevalence has
a major impact on result, it must be carefully selected.

rjsilva@fc.ul.pt

2. Multivariate Bayesian conformity assessment

Conformity assessment can be based on:

» Risk calculation and comparison with a maximum risk (e.g. maximum consumer's risk of 5 %)

Example: Consumer's risk is 1.3 %. Since the maximum consumer's risk is 5 %, product is conforming.

» Acceptance limit calculation (concentration associated with the maximum risk) and comparison of the measured concentration with the acceptance limit. Examples: Measured concentration is 3.20 mg/L and the maximum acceptance limit is 3.09 mg/L; therefore, product does not conform.

8

3. MS-Excel tool for defining acceptance limits

A MS-Excel spreadsheet was developed to defined multivariate acceptance limits for Bayesian assessments based on a tool developed by Kuselman et al. [1].

Input data:

- Prior data;
- Tolerance limit(s);
- Measurement uncertainty;
- Type of reference risk (consumer's or producer's);
- Maximum total risk.

8	c	D	t		G	н	1	1	ĸ	L	м	N	0 .
ontrol pane	Recu	alculate ► (F9) solations are anual mode)	Civit + Sha	Start	O Single iteration (CH+3)	X 50 iterat	ions	Resi original dat (Cot + Sh	ore input n + p				+ H Acc I de Exe
Time	of processing	Finished 50 iter	ations				_						_
put data & i	Outputs			a and	Ubalbase	(function			-	_		and the state of the late	
	Prior	i		(c.)	alc	-1(.)		Toleran	ce limits			and of Chan	Burn-le
omponent	distrib, type	proponent nam	Mean	St. dev.	Mean	St. Dev.		Min.	Max.		Start	Increment	period
A	Normal	D	99.18	1.37	95	2.66		95	105		95	1.33	100
8	Normal	Q	99.7	1.02	95	2.74		95	105		95	1.37	
c	Normal	G	99.33	1.05	95	2.78		95	105		95	1.39	111
D	Normal	C4	98.94	1.22	95	2.77		95	105		95	1.385	17
		Correlation ma	matrix (Prior distribution)				Outputs	Accept.		Absolute		Partics	
			C1	Q	(3	C4			Linit	Total Risk	deviation		spex
		C1	1	0.107	0.125	0.177		C1	90.07772	4.97%	-0.03%		0.04
		(2	0.107	1	0.311	0.404		C2	110.1516				
		3	0.125	0.311	1	0.539		C3	89.77736				0.00
		C4	0.177	0.404	0.539	1		C4.	110.1629				0.00
													_
		Correlation ma	trix (Likelih	ood function)				Posterior	Sistribution	truncation	(empty cel	for no true	cation)
			C1	(2	C3	C4					Min.	Max.	
		a	1	0.107	0.125	0.177		-	CI	_			Not
		2	0.107	1	0.311	0.404		-	0				Not
		3	0.125	0.311	1	0.539		-	3				Not
		C4	0.177	0.404	0.539	1			64	_			Not
				Concession of the local division of the loca		II							

1 - I. Kuselman, F. Pennecchi, R. B. Silva, D. B. Hibbert, IUPAC project 2016-007-1-500: Risk of conformity assessment of a multicomponent material or object in relation to measurement uncertainty of its test result, 2016 - 2018.

rjsilva@fc.ul.pt

10

4. Application examples

Examples of the determination of acce	eptance limits for a 5 % pa	articular or	total specific consum	ier's risk.
Case Prior	Likelihood	$[T_{1i}, T_{1i}]$	A	A ₁₁
1 Normal	Normal	[95, 105]	A _{L1} = 89.935	A _{U1} = 126.56
$\mu_1 = 99.18; \sigma_1 = 1.37$	$u_1 = 0.028c_{1m}$			
2 Uniform	Normal	[95, 105]	$R^*_{c1(c)}$ (%) > 7.54	
$\mu_1 = U(0; -)$	$u_1 = 0.028c_{1m}$		(value for $c_{1m} = 100$)	
$A_{\rm L}$ – Lower acceptance limit; $A_{\rm U}$ – Upper acceptance	limit; Neg. Correl Negligible corre	ation.		
rjsilva@fc.ul.pt				12

1		particular of	totat specific cons	unier s risk.	
Prior	Likelihood	[T _{Li} , T _{Ui}]	AL	A _U	
Normal $\mu_1 = 99.18; \sigma_1 = 1.37$	Normal $u_1 = 0.028c_{1m}$	[95, 105]	A _{L1} = 89.935	A _{U1} = 126.56	
Uniform $\mu_1 = U(0; -)$	Normal $u_1 = 0.028c_{1m}$	[95, 105]	$R_{c1(c)}^{*}$ (%) > 7.54 (value for c _{1m} = 100)		
Normal $\mu_1 = 99.18; \sigma_1 = 1.37; \mu_2 = 99.70; \sigma_2 = 1.02$ $\mu_3 = 99.33; \sigma_3 = 1.05; \mu_4 = 98.94; \sigma_3 = 1.22$ Correlation coefficients: $r_{12} = 0.107; r_{13} = 0.125; r_{14} = 0.177; r_{13} = 0.311;$ $r_{24} = 0.404; r_{34} = 0.539$	Normal $u_1 = 0.028c_{1m}$ $u_2 = 2.74$ $u_3 = 2.78$ $u_4 = 2.77$ Correlation coefficients (see Prior)	[95, 105]	$A_{L1} = 90.281$ $A_{L2} = 91.44$ $A_{L3} = 90.558$ $A_{L4} = 90.449$	$A_{U1} = 124.15$ $A_{U2} = 120.192$ $A_{U3} = 121.357$ $A_{U4} = 121.35$	
Case 3 but Neg. Correl.	Case 3 but Neg. Correl.	[95, 105]	$A_{L1} = 92.463$ $A_{L2} = 91.82$ $A_{L3} = 91.322$ $A_{L4} = 91.223$	$A_{U1} = 123.42$ $A_{U2} = 119.639$ $A_{U3} = 120.791$ $A_{U4} = 120.709$	
Uniform $\mu_1 = U(0; -); \mu_2 = U(0; -); \mu_3 = U(0; -);$ $\mu_4 = U(0; -); \text{ Neg. Correl.}$	Case 3	[95, 105]	$\begin{array}{l} R^{*}_{\rm total(c)} \mbox{(\%)} > 23.32 \\ \mbox{(value for } c_{1m}, \ c_{2m}, \ c_{3m} \mbox{ and } \ c_{4m} \mbox{=} \ 100) \end{array}$		
Case 5	Case 3 but Neg. Correl.	[95, 105]	$R^*_{\text{total}(c)}$ (%) > 24.89 (value for c_{1m} , c_{2m} , c_{3m} a	ind c _{4m} = 100)	

5. Conclusion

• The developed tool makes complex conformity assessments easy!

• The easy comparison of various conformity assessments (e.g. based on informative or non-informative priors) allow understanding the conformity problem.

rjsilva@fc.ul.pt

