

Pros and cons for the laboratory quality management system in the academic environment

David MILDE

- About us our journey to QMS in the laboratory
- Determination of elemental impurities
- What have we learned?
- Pros & cons
- Conclusion

About us

- Public university, established in 1573
- 8 faculties \Rightarrow Faculty of Science
- Department of Analytical Chemistry
 - Bachelor, master and PhD studies of analytical chemistry
 - Close cooperation with pharma industry
 - Limitation: not certified lab
 - Is it possible to bring together:
 - Teaching activities (students)
 - Basic research
 - Contract research

About us

- 2010 – EU funds:

- new facilities
- unique instrumentation interesting to our partners
- Analytical laboratory dedicated only to research
- Which QMS?
 - Accreditation ISO 17025
 - GMP certification
- Preparation started 2013
- Audit for GMP certificate 2015 (2017, 2019)

Good Manufacturing Practice (GMP)

- Small lab: 8 people
- Experts in different fields of anal. chem.
- Part time job for all of us

- DOCUMENTATION

- Lab structure & philosophy
- SOPs
- Written instructions for everything
- NEVER ending process

SÚKL State Institute for Drug Control

STÁTNÍ ÚSTAV PRO KONTROLU LÉČIV

Certificate Ref. No.

Šrobárova 48 100 41 Praha 10

Certifikat spisová zn.: / sukls152628/2014

Fax: +420 271 732 377

Telefon: +420 272 185 111

E-mail: posta@sukl.cz Web: www.sukl.cz

CERTIFIKÁT SVP PRO VÝROBCE Část 1

Vydaný po inspekci v souladu s článkem 111(5) Směrnice 2001/83/ES a s §13, odst. 2, písm. a bod 3 zákona č. 378/2007 Sb., o léčivech a o změnách některých souvisejících zákonů (zákon o léčivech), ve znění pozdějších předpisů.

Příslušný orgán České republiky potvrzuje následující:

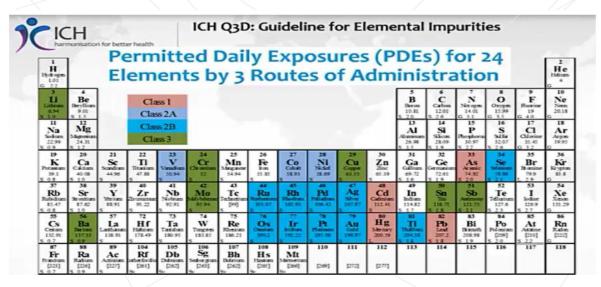
Kontrolní laboratoř: Univerzita Palackého v Olomouci Křížkovského 511/8 771 47 Olomouc

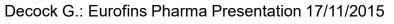
Adresa místa kontroly jakosti: Univerzita Palackého v Olomouci Přírodovědecká fakulta, Katedra analytické chemie, budova

CERTIFICATE OF GMP COMPLIANCE OF A MANUFACTURER Part 1

Issued following an inspection in accordance with Art. 111(5) of Directive 2001/83/EC and Section 13, paragraph 2, letter a, point 3 of the Act No 378/2007 Coll., on Pharmaceuticals and on Amendments to Some Related Acts (the Act on Pharmaceuticals), as amended.

The competent authority of the Czech Republic confirms the following:


The control laboratory: Univerzita Palackého v Olomouci Křížkovského 511/8 771 47 Olomouc


Site address: Univerzita Palackého v Olomouci Přírodovědecká fakulta, Katedra analytické chemie, budova

Elemental impurities in pharmaceuticals

- Sample preparation (API, final drug products, raw material)
- ICP-MS determination (quad, collision cell)
- Risk assessment of the results (usually 3 batches):

Metrological Traceability

- Demonstration of traceability in our lab:
 - CRM solutions for calibration certificate of the CRM;
 - Expiration (shelf life)
 - Mass of a sample calibration of the balance (certificate);
 - Volumetric flasks calibration certificate of the manufacturer;
 - Micropipettes regular "calibration" and checking (certificate);
 - Microwave digestion units regular service/qualification;
 - ICP-MS regular service & qualification (IQ/OQ) protocols;
 - Performance checks on daily basis
 - Tuning solutions (shelf life)

Validation of Measurement Procedures

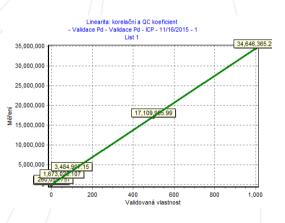
- Every procedure used under GMP shall be validated!
 - We have a SOP dealing with validation & acceptance criteria.
 - It is based on ICH Q2(R1) Validation of Analytical Procedures: Text and Methodology.
 - More rigorous approach parameters, minimum of repeated measurements.

× (1 11
Type of analytical procedure	IDENTIFICATION	TESTING FOR IMPURITIES	ASSAY dissolution (measurement only) content/potency
characteristics		quantitat. limit	content/potency
Accuracy	-	+ -	+
Precision			
Repeatability	-	+ -	+
Interm.Precision	-	+ (1) -	+ (1)
Specificity (2)	+	+ +	+
Detection Limit	-	- (3) +	-
Quantitation Limit	-	+ -	-
Linearity	-	+ -	+
Range	-	+ -	+

REGIONÁLNÍ CENTRUM POKROČILÝCH TECHNO A MATERIÁLŮ

VAZ-AS-001 Počet příloh: 5

Validation of Measurement Procedures


- PROCEDURE:

- 1. Validation protocol: validation experiments, acceptance criteria
- 2. Perform validation experiments
- 3. Validation report: evaluation, compliance with criteria

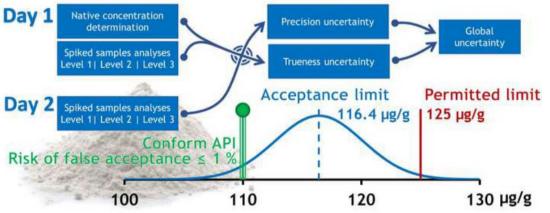
Characteristic	Acceptance criteria	Experimental data
Linearity	R ≥ 0.99	R = 0.9998
Range	LOQ – 1000 µg.L ⁻¹	1.17 – 1000 μg.L ⁻¹
LOD	≤ 0.6 µg.L ⁻¹	0.57 µg/L (n = 10)
LOQ	≤ 1.8 µg.L ⁻¹	1.17 µg/L (n = 10)
Accuracy (recovery)	70 – 150 %	104.7 – 109.5 % (3 levels)
Precision (repeatability)	RSD < 20 %	< 5.2 % (n = 6)
Intermediate precision	RSD < 25 %	< 7.9 (n = 2×6)
Specifity	recovery 70 – 150 %	92.9 – 115.3 % (¹⁰⁵ Pd, ¹⁰⁸ Pd)
Robustness	recovery 70 – 150 %	107.7 – 119.2 % (modifications in procedure)

Validační zpráva

Stanovení paladia jako nečistoty v aktivních farmaceutických substancích, meziproduktech a výchozích surovinách pomocí ICP-MS

Tab. 6: Přesnost - naměřená data

/	Měření	Spike 50 (µg/l)	Spike 500 (µg/l)	Spike 800 (µg/l)
	1	51,20485347	508,7766914	811,9588187
	2	53,01429983	525,2848819	836,6723320
	3	54,37651572	527,7519614	836,8858552
	4	54,08283967	539,0854652	847,8081330
	5	56,76445689	518,6073688	838,9528434
	6	59,18893703	539,6886986	851,0177846



Reporting Results

- Protocols of analysis are prepared for customers.
- Results are presented WITHOUT measurement uncertainty.
- Comparison with specification comparing 2 values (MU not included).
- Out of specification results:
 - Laboratory investigation \rightarrow re-analysis
 - Discussion with customer

Our contribution to conformity assessment:

Milde D., Pluháček T., Kuba M., Součková J., Betencourt da Day 2 Silva R.J.N.: *Measurement uncertainty evaluation from correlated validation data: Determination of elemental* Risk of *impurities in pharmaceutical products by ICP-MS*. Talanta 2020, DOI: 10.1016/j.talanta.2020.121386.

What have we learned?

- Implementation of QMS principles is feasible even in the research lab:
 - It is time consuming and costly.
 - We can rely on measurement results (documentation, data storage, ...).
- It is possible to bring together basic research done in academia & contract research in one lab:
 - "Mix" of personnel (PhD candidates included) in the lab STRICT RULES
 - Different research topics analysed on same instruments
- Personnel have to be trained regularly, even if qualified.
- PhD graduates better prepared for their career.
- Teaching of QA/QC topics based on experience.

What have we learned – "PROS"

- Gained knowledge:
 - Implementation and running of lab QMS
 - Closer contact with industry
 - Solving of challenging tasks in limited time
 - Carefulness in the lab and results reporting
 - Communication skills
- Regular service of analytical instrumentation.
- Benefits from regular calibration of balances, micropipettes, thermometers.
- Income from customers.

What have we learned – "CONS"

- EXPENSES:

- Service of all instruments and IQ/OQ
- Data integrity data storage, audit trail, access to computers, ...
- Quality manager, office staff communication with customers
- Higher running costs (CRMs, chemicals)
- Regular audits and preparation for them:
 - State institute for Drug Control, possibly FDA
 - Customers
- Limited access to laboratory equipment to undergraduate students.
- Daily routine checks in the lab may be time consuming.

CONCLUSIONS

- Laboratory QMS can be implemented in the laboratory of a public university.
- Proper maintenance of QMS is based on regular income from contract research.
- Optimization of expenses needed (e.g. IQ/OQ).
- Contract research can influence university research and vice versa:
 - Scientific publications
 - Invitation to expert committees (e.g. terminology)
- Benefits outweigh difficulties.
- New research topics.

Acknowledgment

Thank You for Your kind attention!

Financial support: Ministry of Education, youth and Sports (LTV 20008)