Quality assurance of analytical measurements – a vital element in safety performance in nuclear field

Elena Neacsu
INTRODUCTION

The approach of reporting results of chemical measurements together with measurement uncertainty is relatively new – 35 years.

No Quality Assurance System → no accurate results

→ not fit for purpose
INTRODUCTION

Example

<table>
<thead>
<tr>
<th>No</th>
<th>Parameter</th>
<th>Method</th>
<th>Maximum allowed value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Chlorides</td>
<td>Turbidimetric</td>
<td>0.02 ppm</td>
</tr>
<tr>
<td>2.</td>
<td>Conductivity</td>
<td>Potentiometric</td>
<td>1 μS/cm</td>
</tr>
<tr>
<td>3.</td>
<td>pH</td>
<td>Electrometric</td>
<td>5.5 – 7.5</td>
</tr>
</tbody>
</table>

Turbidimetric method – LOD – 1.5 ppm visual
- 1.0 ppm UV-VIS

Conductivity cell sensitivity - 1 mS/cm
pH electrode - not suitable for pure water

Eurachem 2020
Virtual Scientific Workshop
Quality Assurance for Analytical Laboratories in the University Curriculum
14 – 16 July 2020
INTRODUCTION

➢ IUPAC

“Protocol for the Design, Conduct and Interpretation of Method Performance Studies”

“Harmonized Guidelines for Internal Quality Control in Analytical Chemistry Laboratories”
INTRODUCTION

EURACHEM
“Quantifying Uncertainty in Analytical Measurement”
INTRODUCTION

IAEA

Safety Standards, Fundamental Safety Principles

Quantifying uncertainty in nuclear analytical measurements
NUCLEAR/RADIOACTIVE MATERIAL CHARACTERIZATION

Analytical chemistry of nuclear materials

- Nuclear fuels: uranium, thorium, plutonium
- Moderators
- Coolants
- Structural materials
- Reprocessed spent nuclear fuel
Characterization of radioactive waste

Steps:

- Collection

- Segregation ➔ change waste streams’ characteristics

- Treatment -

- Conditioning ➔ immobilization ➔ package

- Storage

- Disposal
Characterization of radioactive waste
Characterization of radioactive waste

Characteristics:

- physical - density, volume, shape, position of the waste and embedding matrixes, quality control, mechanical toughness, cracking, diffusion coefficient, gas release, thermal power, etc.

- chemical - elemental composition, content of toxic or reactive substances, etc.

- radiological - dose rate, alpha, beta and gamma activity, isotopic composition and mass of nuclear materials, etc.
Nuclear forensic

- prevention and detection of:
 - theft
 - sabotage
 - unauthorized access
 - illegal transfer
 - malicious acts

- support law enforcement or nuclear security
Nuclear forensic

“Nuclear forensic signatures”
- chemical or isotopic composition,
- elemental concentrations
- chemical impurities
- physical form
- chemical form
- physical dimensions
- visual appearance
- geometry
NUCLEAR ANALYTICAL MEASUREMENTS

- mass spectrometry
- ion beam analysis
- nuclear magnetic resonance spectrometry
- Mössbauer spectrometry
- neutron scattering and diffraction
- neutron activation analysis
- isotopic dilution analysis
- stable isotope and radiotracer studies
- direct radioactivity determinations
NUCLEAR ANALYTICAL MEASUREMENTS

Specific uncertainty features:

- error sources are traceable

- accuracy \[\frac{C'_{Tr}}{C'_{Tr}} \]

- relative calibration uncertainty contributions - CRMs
 - calibration line fitting

- data acquisition uncertainty – standard deviation of the Poisson distribution
NUCLEAR ANALYTICAL MEASUREMENTS

Specific uncertainty features:

- radioactive decay → uncertainty - non-linear components

 minimization of the uncertainty by scaling of time intervals

- radiation → detector → uncertainty components – efficiency
 - saturation
 - dead time

- irradiation → uncertainty components – radiation field intensity
 - spectral field distribution
 - spatial field distribution

Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering (IFIN-HH)

Eurachem 2020

Quality Assurance for Analytical Laboratories in the University Curriculum
14 – 16 July 2020
NUCLEAR ANALYTICAL MEASUREMENTS

Specific uncertainty features:

- background

uncertainty quantification for the results close to detection limit requires special attention
CHALLENGES IN THE QA OF ANALYTICAL TECHNIQUES IN THE NUCLEAR FIELD

Challenges
- Lack of matrix-matched certified reference materials
- Specialized equipment and processing
- Maintaining relevant expertise and capabilities
- Need for further improvements

Overcome:
- Comparing the analytical results obtained with different analytical techniques
- Combining the analytical results obtained with different analytical techniques
- Proficiency tests
CONCLUSION

- Quality Assurance (QA) for an analytical laboratory is an essential tool to ensure good comparability of data.

- Educational initiatives are taken for re-enforcing the analytical chemistry curriculum, and this both on the conventional chemistry and measurement science.

- Practices from nuclear field require a wide range of modern instrument-based analytical techniques, specialized equipment and processing and relevant expertise to lower radiation hazard.

- Extensive research for the development of advanced methods for physical and chemical analysis with increased sensitivity, reliability and thereby enhanced accuracy are conducted to overcome present limitations.
Thank you for your attention!