

"Less than LOD" does NOT mean "invalid result"

Can MU replace LOD?

Advantages

- No arbitrary cut-off
 - Everything is a number
- Decision could be specific to the particular test item
 - Uncertainty for *that* result

Challenges

- MU does not give information about the measurement procedure
- MU is complicated near zero
 - Traditional MU limits may include zero
 - Many useful Bayesian approaches could exclude zero
- MU should be about the test item
 But often isn't
- An MU interval is two-sided
 - A detection decision is one-sided

LGC

Measurement uncertainty is not the same as detection capability

