Evaluating uncertainty for microbiological methods

According to ISO 29201 Water quality — The variability of test results and the uncertainty of measurement of microbiological enumeration methods

Reporting results

Uncertainty

Trollhoken

Presented by Bertil Magnusson at Eurachem workshop May 2022 QUALITY ASSURANCE CHALLENGES OF MEASUREMENTS FROM FIELD TO LABORATORY WITH A FOCUS ON ISO/IEC 17025:2017 REQUIREMENTS

Analytical chemist trying to present UNCERTAINTY in microbiology ...

MU Microbiology

Content

- Microbiology analytical steps
- Reporting results
- Uncertainty
 - Approaches
 - Symbols and units used
 - Distributional (Poisson)
 - Determine operational
 - Expanded
- Reporting uncertainty interval
- Additional components
- Summary reporting
- Eurachem guide

J Microbiology

Focussing on water matrix

For e.g. food, feed and pharmaceutical same approach but higher U due to additional componets

Microbiological analytical steps

Trollboken AB

Reporting results

CFU*	Report	Example
< 10	Value and text	5 Result is an estimate
≥ 10	Value & Uncertainty	20 U = 54 %
	Value and asymmetric confidence interval (95%)	20 [12,34]

*CFU = colony forming units

1

CFU ≥ 10 Inform client 1) Uncertainty Or 1) Give an interval

ISO standards say this

Counted	Reportin	ng of results			
colonies	ISO 8199 Water matrix	ISO 7218 Food matrix			
0	Not detected or < 1	< 1			
1-2	Microorganisms are present	Microorganisms present but < 4			
3	Report results as an estimate	Microorganisms present but < 4			
4 - 9	Report results as an estimate	Report results as an estimate			
≥10	Report resultsReport results				
NOTE 1 Legislation may require different ways of reporting					

Table 1 - Expression of results in CFU/ml or per analytical test portion

Legislation may require different ways of reporting.

NOTE 2 Eventual dilution must be considered, e.g. 3 CFU obtained in a food sample diluted 10 times will be reported as: microorganisms present but < 40 CFU.

Results ≥ 10 CFU measurement uncertainty is needed

Content

- Microbiology analytical steps
- Reporting results
- Uncertainty
 - Approaches
 - Symbols and units used
 - Distributional (Poisson)
 - Determine operational
 - Expanded
- Reporting uncertainty interval
- Additional components
- Summary reporting
- Eurachem guide

J Microbiology

Focussing on water matrix

For e.g. food, feed and pharmaceutical same approach but with more uncertainty components

Uncertainty approaches

GUM principles

Definition of the measurand List of uncertainty components

Intralaboratory

Interlaboratory

Trollboken AB

MU Microbiology

ISO 29201 Water quality

Variability of test results and the uncertainty of measurement of microbiological enumeration methods

- All variants of methods of
 - colony counts
 - most probable number (MPN)
- Two approaches
 - component
 - global
- Not sampling, but subsampling
- *Refers to Nordtest 537 for handling bias and proficiency testing*

ISO 29201 is a general standard for uncertainty in ubio Many many other **ISO standards** e.g. ISO 19036

Symbols

n _c	Number of counts	
u	standard uncertainty	Expanded
u _{sir}	Intra (within) laboratory reproduciblity	uncertaint
U _R	Between laboratory reproducibility	
u _o	operational or technical uncertainty	
u _d	distributional or Poisson uncertainty	U = 2 * u _c
U _{matrix}	uncertainty arising from imperfect mixing of the laboratory sample	Coverage factor k=2
u _c	combined uncertainty	
U	Expanded uncertainty	

Units for uncertainty

Several units are used for uncertainty in microbiology. Example with **standard** uncertainty for 15 CFU.

Unit	u
CFU	5 CFU
%	30 %
In	ln 0.30
log ₁₀	log ₁₀ 0.13

NOTE The uncertainty given can be recalculated to other units Uncertainty u in %

Uncertainty from in-house validation data

Component	General	ubio
Precision Between days	Intermediate precision	Operational + Distributional
Confirmation	-	Uncertainty of confirmation
Inhomogeneity	Repeatability	Matrix uncertainty

Microbiology in water matrix Main components

 $u_c = \sqrt{u_o^2 + u_d^2}$

Main components for uncertainty

Operational *u*_o (technical) **Distributional** *u***_d (Poisson)**

$$u_c = \sqrt{u_o^2 + u_d^2}$$

Only distributional uncertainty is needed for CFU < 10

Uncertainty due to subsampling Poisson – distributional

oossible distribution of contaminated particles in 10 subsamples Distributional $u_d = \sqrt{1/n_c}*100$

CFU = 1 u_d = 100 %

Standard uncertainty

Combined uncertainty (blue), Poisson (green) and operational (red) vs CFU

Distributional uncertainty can be calculated Main components for uncertainty

Operational u_o (technical) Distributional u_d

Operational is needed for CFU ≥ 10

Operational uncertainty is estimated as a difference

u_{SIR} Intra (within) laboratory reproducibility

u_R Intra (within) laboratory reproducibility

When operational uncertainty is small we can often not estimate it

Operational uncertainty - experiment

"Global approach" Large differences condition A and B 30 duplicates are suitable

Calculate $u_{\rm R}$ (sd) for n_{c1} and n_{c2}

Operational uncertainty experiment

n .

When operational uncertainty is small we can often not estimate it

	r ^c l			n_{c2}
n _{C1}	n _{c2}	Mean	u _R (%)	u _{d_rel} (%)
5	8	6,5	33	39
				1

n

"Global", ISO 29201 (Example in log₁₀ units)

Sampl e	Dilutio n	C ₁	C ₂	log(C ₁)	log(C ₂)	s_R^2	u_d^2	u_o^2
1	-4	5	8	0.6990	0.9031	0.0208	0.0290	-0.0082
2	-3	15	11	1.1761	1.0414	0.0091	0.0145	-0.0054
3	-4	11	19	1.0414	1.2788	0.0282	0.0126	0.0156
4	-6	21	39	1.3222	1.5911	0.0361	0.0063	0.0299
5	-5	68	45	1.8325	1.6532	0.0161	0.0033	0.0127
6	-4	151	203	2.1790	2.3075	0.0083	0.0011	0.0072
					Mean:	0.0198	0.0111	0.0086

Trollboken AB

 $u_o^2(log_{10}) = 0.0086$. This can be converted to %, in this case $u_o = 21$ %. **Reporting results**

Operational *u*_o is 21 %

Distributional u_d depends on CFU

$$u_c = \sqrt{u_o^2 + u_d^2}$$

Confidence interval

 $U_{min} = n/\exp\left(\frac{2u_c}{100}\right)$ $U_{max} = n \times \exp\left(\frac{2u_c}{100}\right)$ **Operational is** needed for $CFU \ge 10$

Calculation of interval Example with operation. 15 %

Count	u _o	u _d	u _c	U	U _{min}	U _{max}
CFU	%	%	%	%	CFU	CFU
10	15	32	35	70	5	20
15	15	26	30	60	8	27
20	15	22	27	54	12	34
30	15	18	23	46	19	48
40	15	16	22	44	26	62
50	15	14	21	42	33	76
75	15	12	19	38	51	110
100	15	10	18	36	70	143

Here is calculated an asymmetric interval (95 %) Similar for MPN

1

Additional uncertainty components

$$u_c = \sqrt{u_d^2 + u_o^2 + u_{\text{conf}}^2 + u_{\text{matrix}}^2}$$

Take into account when > 1/3 of u_c

When laboratory perform the sampling also u_{samp} For solids and viscous liquids

U_{matrix}

Often uncertainty over 100 % Use unit log₁₀

Uncertainty approaches

GUM principles

Definition of the measurand List of uncertainty components

Intralaboratory

Interlaboratory

Modellingbased on ...Single lab
validation/
GlobalInterlaboratory
validationProficiency
testingExperimental approaches

Trollboken AB

MU Microbiology

Estimating $u_{\rm R}$ ($s_{\rm R}$ from proficiency testing (NMKL 86)

Trollboken AB

MU Microbiology

Reporting uncertainty

- Test results = 180 cfu/g
- $u_R = 41 \%$
- $u_{\rm d}$ 20 CFU counted

$$\begin{split} -\Sigma C &= 20 \ (\ dilution \ -1, \ 1 \ ml \ on \ 3 \ plates: \ 3 \\ &+8+7 \ colonies \ , \ dilution \ -2, \ 2 \ colonies) \\ &- u_d &= \sqrt{1/n_c} *100 = \sqrt{1/20} *100 = 22 \ \% \end{split}$$

$$u_c = \sqrt{u_d^2 + u_R^2} = \sqrt{22^2 + 41^2} = 47\%$$

Reporting result with confidence interval

180 cfu/g [82,395]

Where 82 – 395 is the asymmetric confidence interval

MU Microbiology

Summary - reporting results

CFU*	Report	Example
< 10	Value and text	5 CFU Result is an estimate
≥ 10	Value & Uncertainty	20 CFU U = 54 %
	Value and asymmetric confidence interval (95%)	20 CFU [12,34]

*CFU = colony forming units

1

CFU ≥ 10 Inform client 1) Uncertainty Or 1) Give an interval

New version of the Guide late 2022

1