

Impact of soil sampling on results of laboratory analysis

GIORGI GHAMBASHIDZE

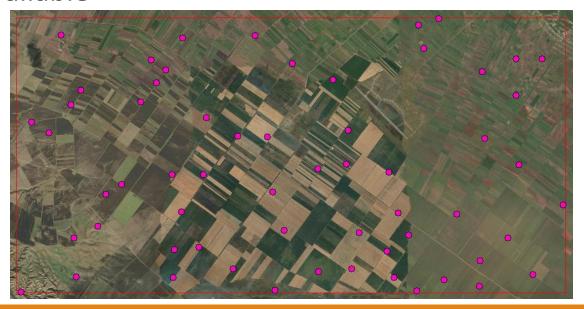
SCIENTIFIC-RESEARCH CENTRE OF AGRICULTURE TBILISI, GEORGIA

Introduction

Sampling

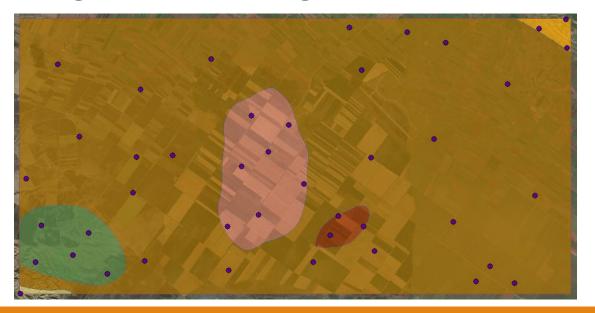
- Is of particular importance during soil analysis
- Is essential in making the right assessment and decision making
- Sampling method should fit to the purpose of the study
- Different sampling strategies can change final results

Introduction

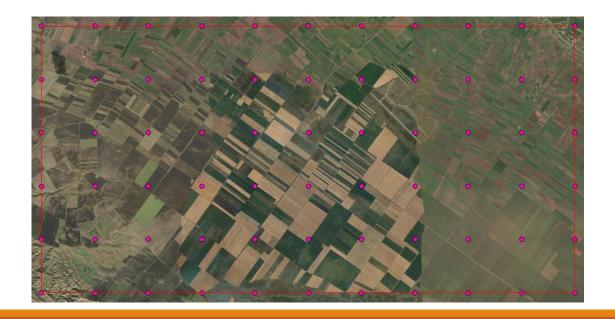

Main challenges in soil sampling

- Soil heterogeneity due to diverse soil taxonomic units
- High degree of variability in the soil-forming factors
- Variability in soil properties (spatial, seasonal, in depth)
- Specificity of soils under different land use

Soil sampling design


- Simple Random Sampling
 - the area to sample is relatively homogeneous
 - there is no prior information or professional knowledge available

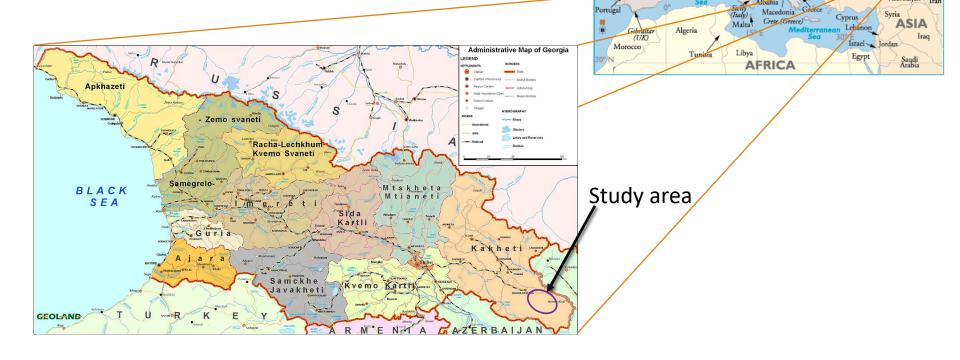
Soil sampling design


- Stratified Random Sampling
 - the area can be divided based on prior knowledge
 - the target area is heterogeneous

Soil sampling design

- Systematic Sampling
 - o uniform coverage of an area is necessary
 - o little to no prior information is available

Study area


- Georgia is located at the crossroad of Europe and Asia
- Total area equals to 69,700 km²
- Population: 3.7 million

Study area

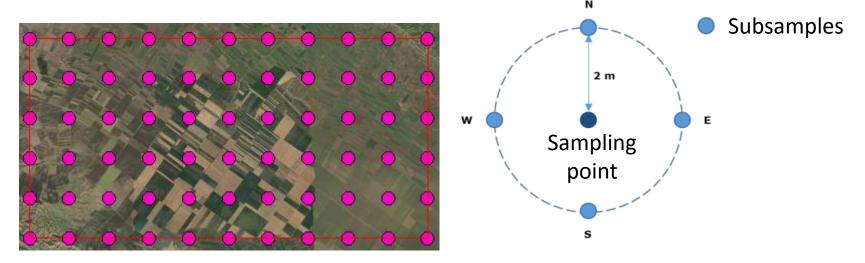
- Georgia is located at the crossroad of Europe and Asia
- Total area equals to 69,700 km²
- Population: 3.7 million

EUROPE

Liechtenstein.

Russian

Russian Federation


Aim of the study

To evaluate organic carbon stock in top 0-30 cm layer of soil

Methodology – Sampling design

- Soil survey using 2x2 km grid*;
- Stratification of sampling points using GIS (Geographic Information Systems) based on topographic maps and satellite imagery;
- Sampling depth 0-30 cm

*Fernández-Ugalde O., Orgiazzi A., Jones A., Lugato E., Panagos P., LUCAS 2018 — SOIL COMPONENT: Sampling Instructions for Surveyors, EUR 28501 EN, doi 10.2760/023673

Methodology – Laboratory analysis

- Organic carbon in soil determined using Walkley-Black method*
 - > Digestion by potassium dichromate in the presence of sulfuric acid
 - Colorimetric determination on spectrophotometer at 600 nm wavelength

^{*}Standard operating procedure for soil organic carbon. Walkley-Black method: titration and colorimetric method. FAO, Rome, 2019.

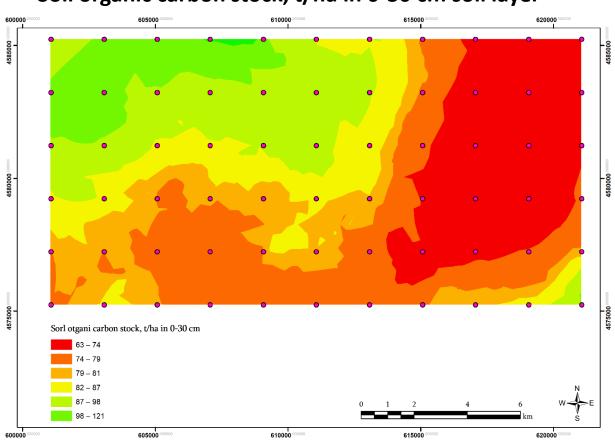
- ► In total 57 soil samples were analysed
- Additional 10 duplicate samples were taken to estimate measurement uncertainty from sampling

Organic carbon concertation (%) in duplicate soil samples used for uncertainty estimation

#	S1A1	S1A2	S2A1	S2A2
1	3.71	3.71	3.71	3.60
2	2.67	2.90	2.73	2.84
3	2.90	2.73	2.67	2.67
4	3.02	3.36	3.42	3.48
5	2.38	2.61	2.67	2.78
6	3.65	3.83	2.78	2.96
7	3.36	3.36	4.00	3.89
8	3.48	3.48	2.84	3.13
9	3.42	3.13	3.02	2.90
10	2.55	2.26	2.84	2.67

Measurement uncertainty using robust analysis of variance (RANOVA)*

Robust ANOVA


Mean	3.1032			
Total SD (std dev)	0.51628			
	Btn Target	Sampling	<u>Analysis</u>	Measure
SD (or u)	0.41289	0.2745	0.14392	0.30994
% of total variance	63.96	28.27	7.77	36.04
U' (Exp relative uncertainty) (95%)		17.69	9.28	19.98

u = standard uncertainty

^{*}Eurachem/EUROLAB/CITAC/Nordtest/ AMC Guide: Measurement uncertainty arising from sampling: a guide to methods and approaches, M. H. Ramsey, S. L. R. Ellison and P. Rostron, Eurachem, Second edn, 2019, ISBN (978-0-948926-35-8), available from http://www.eurachem.org.

Soil organic carbon stock, t/ha in 0-30 cm soil layer

Conclusions

- √ The study showed that sampling has a considerable contribution to the measurement uncertainty despite relatively homogenous area we had in our study;
- ✓ It is recommended to include duplicate samples in each set of soil samples to perform estimation of a measurement uncertainty arising from sampling on permanent basis;
- ✓ To work towards reduction of uncertainty from sampling, as well as from analysis

^{*}Eurachem/EUROLAB/CITAC/Nordtest/ AMC Guide: Measurement uncertainty arising from sampling: a guide to methods and approaches, M. H. Ramsey, S. L. R. Ellison and P. Rostron, Eurachem, Second edn, 2019, ISBN (978-0-948926-35-8), available from http://www.eurachem.org.

Thank you for your attention!